复合材料曲梁的能量辐射传递模型研究

余海宁,陈海波,黄进安

振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 124-132.

PDF(2289 KB)
PDF(2289 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 124-132.
论文

复合材料曲梁的能量辐射传递模型研究

  • 余海宁,陈海波,黄进安
作者信息 +

Energy radiation transfer model of composite curved beam

  • YU Haining,CHEN Haibo,HUANG Jin’an
Author information +
文章历史 +

摘要

本文旨在将能量辐射传递法(RETM)推广应用于复合材料曲梁的分析中,用于预测曲梁的高频能量响应,获得横向点激励作用下曲梁高频振动的能量密度分布特征。首先基于欧拉-伯努利梁(CBT)和铁木辛柯梁理论(TBT)推导了曲梁的平衡微分方程,获得波的传播特性参数。通过与波传播法(WPA)计算得到的理论解进行对比,验证曲梁模型的正确性。通过对比CBT与TBT梁理论计算结果,得出转动惯量与剪切应力的影响主要在较高频段以及较大梁厚的情况下发生。讨论了曲率半径对曲梁高频振动响应的影响,曲率半径的影响主要是改变曲梁轴力以及曲梁的弯曲刚度进而影响曲梁的高频振动响应。最后,讨论了不同碳纳米管(CNT)体积分数以及分布形式对碳纳米管增强复合材料(CNTRC)曲梁高频振动的影响。

Abstract

This paper aims to apply the radiative energy transfer method (RETM) to composite curved beam structures to predict the high-frequency energy response of curved beams and obtain the distribution characteristics of energy density of high-frequency vibrations of curved beams under transverse point excitation. Firstly, based on the Classical beam theory (CBT) and the Timoshenko beam theory (TBT), the equilibrium differential equations of the curved beam are derived, and the wave propagation characteristic parameters are obtained. The correctness of the curved beam model is verified by comparing it with the theoretical solution obtained by the wave propagation method (WPA). By comparing the theoretical calculation results of CBT and TBT beams, it is concluded that the influence of moment of inertia and shear stress mainly occurs in the higher-frequency band and the larger beam thickness. The influence of the curvature's radius on the curved beam's high-frequency vibration response is discussed. The influence of the radius of curvature mainly produces variations of the axial force and the bending stiffness of the curved beam, thereby affecting the high-frequency vibration response of the curved beam. Finally, the effects of different volume fractions and distributions of carbon nanotubes (CNTs) on the high-frequency vibration of curved beams of carbon nanotube reinforced composites (CNTRC) are discussed.

关键词

复合材料曲梁 / 能量辐射传递法 / 高频振动响应

Key words

Composite curved beam / Energy radiation transfer method / High-frequency vibration response

引用本文

导出引用
余海宁,陈海波,黄进安 . 复合材料曲梁的能量辐射传递模型研究[J]. 振动与冲击, 2023, 42(23): 124-132
YU Haining,CHEN Haibo,HUANG Jin’an. Energy radiation transfer model of composite curved beam[J]. Journal of Vibration and Shock, 2023, 42(23): 124-132

参考文献

[1] DALAN G A, COHEN R L. Acoustic Intensity Techniques for Airplane Cabin Applications [J]. J Aircraft, 1985, 22(10): 910-4.
[2] IIJIMA S. Helical Microtubules of Graphitic Carbon [J]. Nature, 1991, 354(6348): 56-8.
[3] FATTAHI A M, SAFAEI B. Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions [J]. Microsyst Technol, 2017, 23(10): 5079-91.
[4] 王勖成. 有限单元法 [M]. 清华大学出版社, 2003.
[5] 杜庆华等. 边界积分方程方法:边界元法 [M]. 高等教育出版社, 1989.
[6] 姚德源, 王其政. 统计能量分析原理及其应用 [M]. 北京理工大学出版社, 1995.
[7] LANGLEY R S. On the vibrational conductivity approach to high frequency dynamics for two-dimensional structural components [J]. Journal of Sound and Vibration, 1995, 182(4): 637-57.
[8] LE BOT A. Geometric Diffusion of Vibrational Energy and Comparison With the Vibrational Conductivity Approach [J]. Journal of Sound and Vibration, 1998, 212(4): 637-47.
[9] LE BOT A. Comparison of vibrational conductivity and radiative energy transfer methods [J]. Journal of Sound and Vibration, 2005, 283(1-2): 135-51.
[10] LE BOT A. A vibroacoustic model for high frequency analysis [J]. Journal of Sound and Vibration, 1998, 211(4): 537-54.
[11] 李翱, 陈海波, 钟强, et al. 正交各向异性层合板壳耦合结构的能量传递特性 [J]. 振动与冲击, 2022, 41(05): 9-19.
LI Ao, CHEN Haibo, ZHONG Qiang, et al. Energy transfer characteristics of orthotropic laminated plate-shell coupled structure[J]. Journal of Vibration and Shock, 2022, 41(05):9-19.
[12] 王幸. 基于能量辐射传递法的结构高频振动响应分析 [D]; 中国科学技术大学, 2021.
[13] ZHONG Q, CHEN H B, LE BOT A. Radiative energy transfer model for finite anisotropic plates [J]. Journal of Sound and Vibration, 2021, 497.
[14] 黄修长, 徐时吟, 章振华等.利用波动法研究曲梁结构中的波形转换和能量传递 [J]. 振动与冲击, 2012, 31(08): 38-46.
HUANG Xiuchang, XU Shiyin, ZHANG Zhenhua, et al. Application of wave approach in wave mode conversion and energy transmission of curved beams[J]. Journal of Vibration and Shock, 2012, 31(08): 38-46.
[15] LE BOT A, ICHCHOU M N, JEZEQUEL L. Energy flow analysis for curved beams [J]. J Acoust Soc Am, 1997, 102(2): 943-54.
[16] MAO H C, YU G B, LIU W, et al. Out-of-Plane Free Vibration and Forced Harmonic Response of a Curved Beam [J]. Shock Vib, 2020, 2020.
[17] 李琳, 徐亚兰. 随机FG-CNTRC结构的动力特性分析 [J]. 西安电子科技大学学报, 2019, 46(06): 140-6.
LI Lin, XU Yalan. Analysis of dynamic characteristics of random FG-CNTRC structure [J]. Journal of Xidian University, 2019, 46(06): 140-146.
[18] HEIDARI M, ARVIN H. Nonlinear free vibration analysis of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes [J]. J Vib Control, 2019, 25(14): 2063-78.
[19] CIVALEK O, AKBAS S D, AKGOZ B, et al. Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes [J]. Nanomaterials-Basel, 2021, 11(3).
[20] 徐芝纶. 弹性力学 下册 [M]. 人民教育出版社, 1982.
[21] 周海军, 贺才春, 李玩幽. 波传播方法在任意边界杆梁结构振动中的应用 [J]. 噪声与振动控制, 2015, 35(02): 32-5.
ZHOU Haijun, HE Caichun, LI Wanyou. Application of wave propagation method to vibration analysis of rod-and-beam structures with arbitrary boundary conditions[J]. Noise and Vibration Control, 2015, 35(02): 32-5.
[22] ANSARI R, SHOJAEI M F, MOHAMMADI V, et al. Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams [J]. Composite Structures, 2014, 113: 316-27.
[23] SAVVAS D N, PAPADOPOULOS V,  PAPADRAKAKIS M. The effect of interfacial shear strength on damping behavior of carbon nanotube reinforced composites [J]. International Journal of Solids and Structures, 2012, 49(26): 3823-37.

PDF(2289 KB)

Accesses

Citation

Detail

段落导航
相关文章

/