一种含惯容的接地刚度时滞反馈动力吸振器的多目标优化设计

杨柳青,赵艳影

振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 133-143.

PDF(3134 KB)
PDF(3134 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 133-143.
论文

一种含惯容的接地刚度时滞反馈动力吸振器的多目标优化设计

  • 杨柳青,赵艳影
作者信息 +

Multi-objective optimization design of a grounded stiffness time delay feedback dynamic vibration absorber with inerter

  • YANG Liuqing,ZHAO Yanying
Author information +
文章历史 +

摘要

惯容和接地刚度可以通过改变振动系统的固有频率对系统的一部分振动起到抑制作用,在被动控制系统中耦合时滞反馈主动控制是一种相对操作简单且有效的振动主动控制技术。本文通过对含惯容的接地刚度时滞反馈动力吸振器系统进行多目标优化设计,通过对系统结构参数和控制参数进行优化,实现了对主系统共振峰幅值、反共振峰幅值、反共振频带对称性的有效控制。首先,通过固定点理论得到接地刚度系统的最优结构参数。其次,通过Cluster Treatment of Characteristic Roots(CTCR)方法对控制系统进行稳定性分析,得到振动系统稳定的反馈增益系数和时滞控制参数的稳定区域。再次,在满足优化准则的前提下,根据反共振频带的对称性得到最优惯容比。最后,结合最优结构参数和准则,得到满足优化目标的控制参数区域。研究表明,针对任意一个外激励频率,在控制参数区域内存在一对反馈增益系数和时滞的最优参数,能够将主系统的振幅抑制到最小值。幅频响应曲线和时间历程响应曲线的数值模拟结果与解析结果吻合,证明了本文结果的可靠性。本文研究结果为时滞主动控制动力吸振器的优化和设计提供了理论依据。

Abstract

The vibration of the vibrating system can be suppressed partly by using inerter and grounded stiffness components. The natural frequency of the vibrating system could be changed by inerter and grounded stiffness. Delayed feedback control technology is a simple and effective active vibration control technology. Delayed feedback control is commonly coupled to passive control systems to suppress vibration. In this paper, the multi-objective optimization design of the grounded stiffness coupled delayed feedback dynamic vibration absorber system with inerter is studied. The amplitude of the resonance peaks and anti-resonance peak, anti-resonance frequency band can be effectively controlled by optimizing the system structure parameters and control parameters. Firstly, the optimal structural parameters of the inerter and grounded stiffness system are obtained by the fixed-point theory. Secondly, the stability analysis of the control system is analyzed by the Cluster Treatment of Characteristic Roots (CTCR) method. The stable region of the feedback gain and delayed coefficient are obtained. Thirdly, the optimal inerter coefficient is obtained according to the symmetry of the anti-resonance frequency band in the perspective of satisfying the optimization criteria. Finally, the region of control parameters satisfying optimization goal is obtained considering optimal structural parameters and criteria. The research shows that for a certain external excitation frequency, there is a pair of optimal parameters of feedback gain coefficient and time-delay in control parameter region. The amplitude of the primary system can be suppressed to the minimum by selecting this pair of optimal parameters of feedback gain coefficient and time-delay. The numerical simulation results of amplitude frequency response curve and time history response curve are agree with the analytical results well. The reliability of the results in this paper is approved from the above results. The theory foundation of optimization and design is provided for active delayed feedback control system.

关键词

动力吸振器 / 惯容 / 接地刚度 / 时滞反馈控制 / 多目标优化

Key words

dynamic vibration absorber / inerter / grounded stiffness / delayed feedback control / multi-objective optimization

引用本文

导出引用
杨柳青,赵艳影. 一种含惯容的接地刚度时滞反馈动力吸振器的多目标优化设计[J]. 振动与冲击, 2023, 42(23): 133-143
YANG Liuqing,ZHAO Yanying. Multi-objective optimization design of a grounded stiffness time delay feedback dynamic vibration absorber with inerter[J]. Journal of Vibration and Shock, 2023, 42(23): 133-143

参考文献

[1] FRAHM H. Device For Damping Vibrations Of Bodies[P]. US,US0989958.1909.
[2] ORMONDROYD J. HARTOG J.P. The theory of dynamic vibration absorber[J]. Journal of Applied Mechanics-Transactions of the ASME,1928,50: 9-22.
[3] DEN Hartog JP. Mechanical vibrations. New York: McGraw-
Hall Book Company 1947
[4] BROCK J E. A note on the damped vibration absorber[J]. Journal of Applied Mechanics,1946,13(4):A-284
[5] HAHNKAMM E. The damping of the foundation vibrations at varying excitation frequency[J]. Master of Architecture,1932,4:192-201.
[6] ASAMI T, NISHIHARA O. Closed-Form Exact Solution to H∞ Optimization of Dynamic Vibration Absorbers (Application to Different Transfer Functions and Damping Systems)[J]. Journal of Vibration and Acoustics,2003,125(3): 398-405.
[7] NISHIHARA O.,ASAMI T. Closed-Form Solutions to the Exact Optimizations of Dynamic Vibration Absorbers (Minimizations of the Maximum Amplitude Magnification Factors)[J]. Journal of Vibration and Acoustics,2002,124(4): 576-582.
[8] REN M Z. A variant design of the dynamic vibration absorber[J]. Journal of Sound and Vibration,2001,245(4): 762-770.
[9] 彭解华,陈树年.正、负刚度并联结构的稳定性及应用研究[J].振动.测试与诊断,1995,15(02):14-18.
PENG Jiehua, CHEN Shu Nian. The stability and application of a structure with positive stiffness element and negative stiffness element[J]. Journal of Vibration, Measurement and Diagnosis,1995,15(02):14-18.
[10] 彭海波,申永军,杨绍普.一种含负刚度元件的新型动力吸振器的参数优化[J].力学学报,2015,47(2): 320-327
PENG Haibo, SHEN Yongjun, YANG Shaopu. Parameter optimization of a new type of dynamic vibration absorber with negative stiffness[J]. Chinese Journal of Theoretical and Applied Mechanics,2015,47(2): 320-327 (in Chinese)
[11] 王孝然,申永军,杨绍普等.含负刚度元件的三要素型动力吸振器的参数优化.振动工程学报,2017,30(2): 177-184.
WANG Xiaoran, SHEN Yongjun, YANG Shaopu, et al. Parameter optimization of three-element type dynamic vibration absorber with negative stiffness[J].Journal of Vibration Engineering,2017,30(2): 177-184 (in Chinese)
[12] SHEN Y J, PENG H B, LI X H, et al. Analytically optimal parameters of dynamic vibration absorber with negative stiffness[J]. Mechanical Systems and Signal Processing,2017,85: 192-203
[13] SHEN Y J, XING Z Y, YANG S P, et al. Parameters optimization for a novel dynamic vibration absorber[J]. Mechanical Systems and Signal Processing,2019,133: 106282
[14] 范舒铜,申永军.含惯容和接地刚度的黏弹性动力吸振器的参数优化[J].振动工程学报,2022,(04):814-825.
FAN Shutong,SHEN Yongjun. Parameter optimization of viscoelastic dynamic vibration absorber with inerter and grounded stiffness[J]. Journal of Vibration Engineering,2022,(04):814-825.
[15] SMITH M C. Synthesis of mechanical networks: the inerter[J]. IEEE Transactions on Automatic Control,2002,47
(10):1648-1662.
[16] CHEN M Z Q,HU Y,HUANG L, et al. Influence of inerter on natural frequencies of vibration systems[J]. Journal of Sound and Vibration,2014,333(7): 1874-1887.
[17] CHEN M Z Q,HU Y,LI C, et al. Application of semiactive inerter in semi-active suspensions via forcetracking[J]. Journal of Vibration and Acoustics,2016,138(4):
041014.
[18] HU Y, CHEN M Z Q, SHU Z, et al. Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution[J]. Journal of Sound and Vibration,2015,346(1):17-36.
[19] HU Y, CHEN M Z Q, SHU Z, et al. Vibration analysis for isolation system with inerter[C]. Proceedings of the 33rd Chinese Control Conference,2014:6687-6692.
[20] HU Y,CHEN M Z Q,SHU Z.Passive vehicle suspensions employing inerters with multiple performance requirements
[J]. Journal of Sound and Vibration,2014,333:2212-2225.
[21] BARREDO E, BLANCO A, COLÍN J, et al. Closed-form solutions for the optimal design of inerter-based dynamic vibration absorbers[J]. International Journal of Mechanical Sciences,2018,144:41-53.
[22] WANG X R,HE T,SHEN Y J, et al. Parameters optimization and performance evaluation for the novel inerter-based dynamic vibration absorbers with negative stiffness[J]. Journal of Sound and Vibration,2019,463:114941
[23] 陈杰,孙维光,吴杨俊等.基于惯容负刚度动力吸振器的梁响应最小化[J].振动与冲击,2020,39(8): 15-22.
CHEN Jie, SUN Weiguang, WU Yang Jun,et al. Minimization of beam response using inerter-based dynamic vibration absorber with negative stiffness[J]. Journal of Vibration and Shock,2020,39(8): 15-22.(in Chinese)
[24] LEWIS T D,JIANG J Z,NEILD S A,et al.Using an inerter-based suspension to improve both passenger comfort and track wear in railway vehicles[J]. Vehicle System Dynamics,2020,58(3): 472-493.
[25] 隋鹏,申永军,杨绍普.一种含惯容和接地刚度的动力吸振器参数优化.力学学报,2021,53(5): 1412-1422.
SUI Peng, SHEN Yongjun, YANG Shaopu. Parameters optimization of a dynamic vibration absorber with inerter and grounded stiffness[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(5): 1412-1422.
[26] OLGAC N.,HOLM-HANSEN B.T.A Novel Active Vibration Absorption Technique: Delayed Resonator[J]. Journal of Sound & Vibration,1994,176(1): 93-104.
[27] ZHAO Y Y, XU J. Effects of delayed feedback control on nonlinear vibration absorber system[J]. Journal of Sound & Vibration,2007,308(1-2): 212-230.
[28] SUN Y X, XU J,et al. Experimental studies on active control of a dynamic system via a time-delayed absorber[J]. Acta Mechanica Sinica,2015.
[29] SUN Y X, XU J. Experiments and analysis for a controlled mechanical absorber considering delay effect[J]. Journal of Sound and Vibration,2015,339: 25-37.
[30] YAN G, FANG M, XU J. Analysis and experiment of time-delayed optimal control for vehicle suspension system[J]. Journal of Sound and Vibration,2019,446: 144-158.
[31] 闫盖,方明霞.考虑主动时滞的汽车悬架系统控制特性研究[J].计算力学学报,2020,37(03): 269-277.
YAN Gai,FANG Mingxia. Research on control characteristics of vehicle suspension system with intentional time delay [J]. Chinese Journal of Computational Mechanics,2020,37(3):269—277.
[32] MENG H, SUN X T, XU J, etl al. The generalization of equal-peak method for delay-coupled nonlinear system[J]. Physica D:Nonlinear Phenomena,2020,403
[33] SIPAHI R.,OLGAC N. Stability Robustness of Retarded LTI Systems with Single Delay and Exhaustive Determination of Their Imaginary Spectra[J]. SIAM Journal on Control and Optimization,2006,45(5):1680-1696.
[34] LIU K F, LIU J. The damped dynamic vibration absorbers: Revisited and new result[J]. Journal of Sound and Vibration,2005,284(3):1181-1189

PDF(3134 KB)

Accesses

Citation

Detail

段落导航
相关文章

/