双侧亥姆霍兹声学超材料带隙特性

孙维鹏,沈名钊,钟可欣,刘园园,赵道利

振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 144-150.

PDF(2144 KB)
PDF(2144 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 144-150.
论文

双侧亥姆霍兹声学超材料带隙特性

  • 孙维鹏,沈名钊,钟可欣,刘园园,赵道利
作者信息 +

Band gap characteristics of bilateral Helmholtz acoustic metamaterial

  • SUN Weipeng,SHEN Mingzhao,ZHONG Kexin,LIU Yuanyuan,ZHAO Daoli
Author information +
文章历史 +

摘要

为了有效抑制低频噪声并拓宽低频带隙,设计了一种具有低频宽带的双侧亥姆霍兹声学超材料。通过有限元法对系统能带结构和传输谱进行计算;通过能带结构上各点振动模态对带隙形成机理进行分析;运用弹簧质量模型计算等效带隙频率,并探究了结构参数对带隙的影响。结果表明:通过改变结构参数可实现带隙超车现象,在亥姆霍兹谐振腔材料为钨,其壁厚和高度分别为1.0 mm、6.0 mm,包覆层半径为4.6 mm,基板厚度为1.0 mm时,模型的带隙起始频率为195.8 Hz。在此参数下,第一完全带隙宽度拓宽至758.1 Hz。所设计的双侧亥姆霍兹声学超材料能够为低频噪声控制提供参考。

Abstract

In order to effectively suppress low-frequency noise and broaden the low-frequency band gap, a double-sided Helmholtz acoustic metamaterial with low-frequency broadband is designed. The band structure and transmission spectrum of the system are calculated by the finite element method. The formation mechanism of band gap is analyzed by the vibration modes of each point on the band structure. The spring mass model is used to calculate the equivalent band gap frequency, and the influence of structural parameters on the band gap is explored. The results show that the band gap overtaking phenomenon can be realized by changing the structural parameters. When the Helmholtz resonator material is tungsten, the wall thickness and height are 1.0 mm and 6.0 mm respectively, the cladding radius is 4.6 mm, and the substrate thickness is 1.0 mm, the band gap starting frequency of the model is 195.8 Hz. Under this parameter, the first complete band gap width is broadened to 758.1 Hz. The designed two-sided Helmholtz acoustic metamaterial can provide a reference for low-frequency noise control.

关键词

声学超材料 / 亥姆霍兹谐振腔 / 局域共振 / 低频宽带

Key words

Acoustic metamaterials / Helmholtz resonant cavity / local resonance / low frequency broadband

引用本文

导出引用
孙维鹏,沈名钊,钟可欣,刘园园,赵道利. 双侧亥姆霍兹声学超材料带隙特性[J]. 振动与冲击, 2023, 42(23): 144-150
SUN Weipeng,SHEN Mingzhao,ZHONG Kexin,LIU Yuanyuan,ZHAO Daoli. Band gap characteristics of bilateral Helmholtz acoustic metamaterial[J]. Journal of Vibration and Shock, 2023, 42(23): 144-150

参考文献

[1] 姚天楠, 李晨, 于萍等. 基于变分模态分解的主动噪声控制系统的研究[C]//中国环境保护产业协会. 第十七届全国噪声与振动控制学术会议暨中国环境保护产业协会噪声与振动控制专业委员会第六届委员大会论文集[C], 2023: 288-294.Yao T N, Li C, Yu P, et al. Research on active noise control system based on variational mode decomposition [C] // China Environmental Protection Industry Association. The 17th National Conference on Noise and Vibration Control and the Sixth Committee of Noise and Vibration Control Committee of China Environmental Protection Industry Association [ C ], 2023: 288-294.
[2] Gupta A, Gupta A, Jain K, et al. Noise Pollution and Impact on Children Health[J]. Indian journal of pediatrics, 2018, 85(4).
[3] Arpan G. A review on sonic crystal, its applications and numerical analysis techniques[J]. Acoustical Physics, 2014, 60(2).
[4] 王刚. 声子晶体局域共振带隙机理及减振特性研究[D].国防科学技术大学, 2005.
Wang G. Study on the local resonance band gap mechanism and vibration reduction characteristics of phononic crystals[D]. University of Defense Science and Technology, 2005.
[5] 黄唯纯,颜士玲,李鑫,等. 关于声学超构材料名词术语的探讨[J]. 中国材料进展,2021, 40(01): 1-6+20-21.
Huang W C, Yan S L, Li X, et al. Discussion on Noun Terms of Acoustic Metamaterial [J]. Progress of Chinese Materials, 2021, 40(01): 1-6 + 20-21.
[6] 沈超明, 黄杰, 陈墨林, 等. 基于多层S型局域振子的声子晶体双层梁结构带隙特性研究[J]. 振动与冲击, 2023, 42(02): 197-204+234.
Shen C M, Huang J, Chen M L, et al. Study on band gap characteristics of phononic crystal double-layer beam structure based on multi-layer S-type local oscillator [J]. Vibration and shock, 2023, 42(02): 197-204 + 234.
[7] Rupin M, Lemoult F, Lerosey G, et al. Experimental demonstration of ordered and disordered multiresonant metamaterials for lamb waves[J]. Physical review letters, 2014, 112(23).[8] Celli P, Yousefzadeh B, Daraio C, Gonella S. Bandgap widening by disorder in rainbow metamaterials[J]. Applied Physics Letters, 2019, 114(9).
[9] Lim C W. From photonic crystals to seismic metamaterials: A review via phononic crystals and acoustic metamaterials[J]. Archives of Computational Methods in Engineering, 2021, 29(2): 1-62.
[10] Zhang Z, Han X K, Ji G M. The bandgap controlling by geometrical symmetry design in hybrid phononic crystal[J]. International Journal of Modern Physics B, 2018, 32(04): 1850034.
[11] Lee W, Lee H, Kim Y Y. Experiments of wave cancellation with elastic phononic crystal[J]. Ultrasonics, 2016, 72: 128-133.
[12] Dong Y, Yao H, Du J, et al. Research on bandgap property of a novel small size multi-band phononic crystal[J]. Physics Letters A, 2019, 383(4): 283-288.
[13] 王艳锋. 含共振单元声子晶体的带隙特性及设计[D]. 北京: 北京交通大学, 2015.
Wang Y F. Band gap characteristics and design of phononic crystals with resonant units[D]. Beijing: Beijing Jiaotong University, 2015.
[14] Han D H, Zhao J B, Zhang G J, et al. Study on Low-Frequency Band Gap Characteristics of a New Helmholtz Type Phononic Crystal[J]. Symmetry, 2021, 13(8): 1379.
[15]吴旭东,张茗海,左曙光,等. 二自由度振子型的二维LR声子晶体弯曲振动带隙研究[J]. 振动与冲击,2019, 38(02): 164-171.
Wu X D, Zhang M H, Zuo S G, et al. Bending vibration band gap of two-dimensional LR phononic crystals with two-degree-of-freedom oscillator[J]. Vibration and shock, 2019,38 (02): 164-171.
[16] 沈惠杰,李雁飞,苏永生,等. 舰船管路系统声振控制技术评述与声子晶体减振降噪应用探索[J]. 振动与冲击,2017, 36(15): 163-170.
Shen H J, Li Y F, Su Y S, et al. Sound and vibration control technology of ship pipeline system and application of phononic crystal vibration and noise reduction [J]. Vibration and shock, 2017, 36 (15): 163-170.
[17] Sun W P, Zhong K X, Liu Y Y, et al. Enhanced metamaterial vibration for high-performance acoustic piezoelectric energy harvesting[J]. Composites Communications, 2022, 35: 101342.
[18] Miroshnichenko A E, Flach S, Kivshar Y S. Fano resonances in nanoscale structures[J]. Reviews of Modern Physics, 2010, 82(3): 2257.
[19] 冯涛, 王余华, 王晶, 等. 结构型声学超材料研究及应用进展[J]. 振动与冲击, 2021, 40(20): 150-157.
Feng T, Wang Y, Wang J, et al Research and application progress of structural acoustic metamaterial [J] Vibration and Shock, 2021, 40 (20): 150-157.
[20]杨世礼,钟雨豪,颜士玲,等. 弹性板波超材料研究进展[J]. 科学通报,2022, 67(12): 1232-1248.
Yang S L, Zhong Y H, Yan S L, et al. Research progress of elastic plate-wave metamaterials [J]. Science Bulletin, 2022, 67(12): 1232-1248.
[21] Zeng Y, Xu Y, Deng K K, et al. Low-frequency broadband seismic metamaterial using I-shaped pillars in a half-space[J]. Journal of Applied Physics, 2018, 123(21): 214901-214901.
[22] Steven A. Cummer and Johan C and Andrea A. Controlling sound with acoustic metamaterials[J]. Nature Reviews Materials, 2016, 1(3): 2059-1736.
[23] Yamamoto T. Acoustic metamaterial plate embedded with Helmholtz resonators for extraordinary sound transmission loss[J]. Journal of Applied Physics, 2018, 123(21): 215110-215110.
[24] 钟可欣,孙维鹏,赵道利,等. Helmholtz声学超材料带隙特性分析[J]. 哈尔滨工程大学学报,2022, 43(09): 1356-1361.
Zhong K X, Sun W P, Zhao D L, et al. Analysis of band gap characteristics of Helmholtz acoustic metamaterials[J]. Journal of Harbin Engineering University, 2022, 43(09): 1356-1361.
[25] Chen T, Jiao J, Yu D. Strongly coupled phononic crystals resonator with high energy density for acoustic enhancement and directional sensing[J]. Journal of Sound and Vibration, 2022, 529: 116911.
[26] Li J B, Wang Y S, Zhang C. Tuning of acoustic bandgaps in phononic crystals with Helmholtz resonators[J]. Journal of Vibration and Acoustics, 2013, 135(3).
[27] Wang Z G, Lee S H, Kim C K, et al. Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators[J]. Journal of Applied Physics, 2008, 103(6): 064907.
[28] 陈鑫,姚宏,赵静波,等. 薄膜与 Helmholtz 腔耦合结构低频带隙[J]. 物理学报, 2019, 21.
Chen X, Yao H, Zhao J B, et al. Low-frequency band gap of thin film and Helmholtz cavity coupling structure[J]. Physics, 2019, 21.
[29] Han D H, Zhao J B, Zhang G J, et al. Study on Low-Frequency Band Gap Characteristics of a New Helmholtz Type Phononic Crystal[J]. Symmetry, 2021, 13(8): 1379.
[30] Liu G S, Peng Y Y, Liu M H, et al. Broadband acoustic energy harvesting metasurface with coupled Helmholtz resonators[J]. Applied Physics Letters, 2018, 113(15): 153503.
[31] Ma K, Tan T, Yan Z, et al. Metamaterial and Helmholtz coupled resonator for high-density acoustic energy harvesting[J]. Nano Energy, 2021, 82: 105693.
[32] Yang Q, Song T, Wen X D, et al. Simulations on the wide bandgap characteristics of a two-dimensional tapered scatterer phononic crystal slab at low frequency[J]. Physics Letters A, 2020, 384(35): 126885.
[33] Li T, Wang Z, Xiao H, et al. Dual-band piezoelectric acoustic energy harvesting by structural and local resonances of Helmholtz metamaterial[J]. Nano Energy, 2021, 90: 1065

PDF(2144 KB)

Accesses

Citation

Detail

段落导航
相关文章

/