导流板旋向对螺旋铜管换热器传热性能的影响

季家东1,倪旭旺1,张经纬1,李飞扬2,陈清华1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 151-158.

PDF(2416 KB)
PDF(2416 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 151-158.
论文

导流板旋向对螺旋铜管换热器传热性能的影响

  • 季家东1,倪旭旺1,张经纬1,李飞扬2,陈清华1
作者信息 +

Effects of rotating direction of spiral deflector on heat transfer performance of helical copper tube heat exchanger

  • JI Jiadong1,NI Xuwang1,ZHANG Jingwei1,LI Feiyang2,CHEN Qinghua1
Author information +
文章历史 +

摘要

为了获得具有更高综合传热性能的螺旋铜管(Helical Copper Tube, HCT)换热设备,基于两种导流方案的换热器:螺旋导流板(Spiral Deflector,SD)、HCT同旋向换热器(记为:SSD-HCT换热器)和SD、HCT反旋向换热器(记为:OSD-HCT换热器),采用双向--流固耦合计算法,研究了SD旋向对HCT振动强化传热性能和换热器综合传热性能的影响。研究表明:对于SSD-HCT换热器,壳程流体纵掠HCT,场协同角接近90°,HCT传热性能不佳,壳程流体出口温度较低;对于OSD-HCT换热器,壳程流体横掠HCT,场协同角较小,HCT传热性能较佳,壳程流体出口温度较高。SD和HCT同旋向布置时,换热器内HCT的传热性能较差,但HCT振动强化传热的效果明显;SD和HCT反旋向布置时,换热器内HCT的传热性能较好,但HCT振动强化传热的效果不明显。此外,换热器的综合振动强化传热能力随流速的增加而降低,SSD-HCT换热器的综合振动强化传热能力较高。

Abstract

In order to obtain helical copper tube (HCT) heat exchanger with higher comprehensive heat transfer performance, two kinds of heat exchangers with different flow diversion schemes were proposed: SSD-HCT (the spiral deflector (SD) and HCT have the same spiral direction) heat exchanger and OSD-HCT (the SD and HCT have opposite spiral direction) heat exchanger. Based on the bidirectional fluid solid interaction calculation method, the effects of SD rotation direction on the vibration-enhanced heat transfer performance of HCT and the comprehensive heat transfer performance of heat exchanger were studied. The results show that for the SSD-HCT heat exchanger, the heat transfer performance of HCT is poor and the outlet temperature of shell side fluid is lower. This is because the shell side fluid sweeps the HCTs longitudinally, making the field synergy angle close to 90°. For the OSD-HCT heat exchanger, the heat transfer performance of HCT is better and the outlet temperature of shell side fluid is higher. This is because the shell side fluid sweeps the HCTs transversely, making the field synergy angle smaller. The vibration-enhanced heat transfer performance of HCTs is obvious when the SD and HCT are arranged in the same spiral direction, and the vibration-enhanced heat transfer performance of HCTs is not obvious when the SD and HCT are arranged in opposite spiral direction. In addition, the comprehensive vibration enhanced heat transfer capacity of the heat exchanger decreases with the increase of the flow rate. And also, the comprehensive vibration enhanced heat transfer capability of the SSD-HCT heat exchanger is higher than that of the OSD-HCT heat exchanger.

关键词

换热器 / 螺旋铜管 / 振动强化传热 / 导流板 / 旋向

Key words

Heat exchanger / Spiral copper tube / Vibration enhances heat transfer / Deflector / Rotation

引用本文

导出引用
季家东1,倪旭旺1,张经纬1,李飞扬2,陈清华1. 导流板旋向对螺旋铜管换热器传热性能的影响[J]. 振动与冲击, 2023, 42(23): 151-158
JI Jiadong1,NI Xuwang1,ZHANG Jingwei1,LI Feiyang2,CHEN Qinghua1. Effects of rotating direction of spiral deflector on heat transfer performance of helical copper tube heat exchanger[J]. Journal of Vibration and Shock, 2023, 42(23): 151-158

参考文献

[1] BERGLES A E. Recent developments in enhanced heat transfer[J]. Heat and Mass Transfer, 2011, 47(8): 1001-1008.
[2] Mitsuishi A, Sakoh M, Shimura T, et al. Direct Numerical Simulation of Convective Heat Transfer in a Pipe with Transverse Vibration[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119048.
[3] JI J D, LI F Y, SHI B J, et al. Analysis of the effect of baffles on the vibration and heat transfer characteristics of elastic tube bundles[J]. International Communications in Heat and Mass Transfer, 2022, 136: 106206.
[4] CHENG L, LUAN T, DU W, et al. Heat transfer enhancement by flow-induced vibration in heat exchangers[J]. International Journal of Heat and Mass Transfer, 2009, 52(3-4): 1053-1057.
[5] RZIG R, TROUDI F, BEN KHEDHER N, et al. Enhancement of 3D mass and heat transfer within a porous ceramic exchanger by flow-induced vibration[J]. ACS Omega, 2022, 7(15): 13280-13289.
[6] JI J D, GAO R M, CHEN W Q, et al. Analysis of vortex flow in fluid domain with variable cross-section and design of a new vortex generator[J]. International Communications in Heat and Mass Transfer, 2020, 116: 104695.
[7] JI J D, ZHANG J W, GAO R M, et al. Numerical research on vibration-enhanced heat transfer of improved elastic tube bundle heat exchanger[J]. Case Studies in Thermal Engineering. 2022, 33: 101936.
[8] JI J D, GAO R M, SHI B J, et al. Improved tube structure and segmental baffle to enhance heat transfer performance of elastic tube bundle heat exchanger[J]. Applied Thermal Engineering, 2022, 200: 117703.
[9] 季家东,张经纬,高润淼,等. 脉动流发生装置诱导弹性管束振动的实验研究[J]. 振动与冲击,2021,40(3):291-296.
JI Jiadong, ZHANG Jingwei, GAO Runmiao, et al. Tests for pulsating flow generator-induced vibration of elastic tube bundle[J]. Journal of Vibration and Shock, 2021, 40(3): 291-296
[10] 季家东,陈卫强,邓旭,等. 来流方向对弹性管束振动及传热特性的影响[J]. 振动与冲击,2022,41(18):252-257.
JI Jiadong, CHEN Weiqiang, DENG Xu, et al. Imfluence of the flow direction on the vibration and heat transfer characteristics of an elastic tube bundle[J]. Journal of Vibration and Shock, 2022, 41(18): 252-257.
[11] JI J D, GE P Q, LIU P, et al. Design and application of a new distributed pulsating flow generator in elastic tube bundle heat exchanger[J]. International Journal of Thermal Sciences, 2018, 130: 216-226.
[12] 姜波,郝卫东,刘福国,等. 流体脉动对新型弹性管束传热特性影响的实验研究[J]. 振动与冲击,2012,31(10):59-63.
JIANG Bo, HAO Weidong, LIU Fuguo, et al. Experiments on effects of fluid pulsation on heat transfer characteristics of the new type elastic tube bundle[J]. Journal of Vibration and Shock, 2012, 31(10): 59-63.
[13] DUAN D R, GE P Q, BI W B. Numerical investigation on heat transfer performance of planar elastic tube bundle by flow-induced vibration in heat exchanger[J]. International Journal of Heat and Mass Transfer, 2016, 103: 868-878.
[14] DUAN D R, GE P Q, BI W B. Numerical investigation on the heat transfer enhancement mechanism of planar elastic tube bundle by flow-induced vibration[J]. International Journal of Thermal Sciences, 2017, 112: 450-459.
[15] WANG S, JIAN G, XIAO J, et al. Fluid-thermal-structural analysis and structural optimization of spiral-wound heat exchanger[J]. International Communications in Heat and Mass Transfer, 2018, 95: 42-52.
[16] Bayram H, Sevilgen G. Numerical investigation of the effect of variable baffle spacing on the thermal performance of a shell and tube heat exchanger[J]. Energies, 2017, 10(8): 1156.
[17] Bayram H, Sevilgen G. Numerical investigation of the effects of different baffle types on the thermal performance of a shell and tube heat exchanger[J]. Academic Platform-Journal of Engineering and Science, 2018, 6(3): 58-66.
[18] CHEN Y P, CAO R B, DONG C, et al. Numerical simulation on the performance of trisection helical baffle heat exchangers with small baffle incline angles[J]. Numerical Heat Transfer, Part A: Applications, 2016, 69(2): 180-194.
[19] Arani A A A, Uosofvand H. Improving shell and tube heat exchanger thermohydraulic performance using combined baffle[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2020, 30(8): 4119-4140.
[20] Webb R L. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design[J]. International Journal of Heat and Mass Transfer, 1981, 24(4): 715-726.
[21] SALIMPOUR M R. Heat transfer coefficients of shell and coiled tube heat exchangers [J]. Experimental Thermal and Fluid Science. 2009, 33(2): 203-207.

PDF(2416 KB)

Accesses

Citation

Detail

段落导航
相关文章

/