穿甲弹斜侵彻钛合金靶板试验与数值模拟研究

李钊 1, 孙旭光 1,周中锋 2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 159-166.

PDF(2602 KB)
PDF(2602 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 159-166.
论文

穿甲弹斜侵彻钛合金靶板试验与数值模拟研究

  • 李钊 1, 孙旭光 1,周中锋 2
作者信息 +

Tests and numerical simulation of oblique penetration of armour-piercing projectile into titanium alloy target

  • LI Zhao1,SUN Xuguang1,ZHOU Zhongfeng2
Author information +
文章历史 +

摘要

为研究穿甲弹斜侵彻钛合金靶板的极限跳飞角度及相关影响因素,开展了7.62mm穿甲燃烧弹的弹道冲击试验,获取了弹体斜侵彻不同厚度、不同倾斜角度钛合金靶体的极限跳飞角度。同时利用有限元软件LS-DYNA对穿甲弹斜侵彻钛合金靶体进行数值模拟仿真,并与试验数据对比验证模型的有效性。随后讨论了靶板倾角与靶体厚度等因素对弹道性能的影响规律。结果表明:靶板倾角的增大有效降低了穿甲弹的穿甲能力,弹体贯穿后的剩余速度及姿态变化角随靶板倾角的增加而分别呈现非线性下降与上升的趋势;钛合金靶板的极限跳飞角度对靶板厚度敏感,极限跳飞角度随靶板厚度的增加而非线性下降。

Abstract

Ballistic impact test of 7.62mm armour-piercing projectile penetrating titanium alloy plates were carried out to study the factors effecting the limit ricochet angle of titanium alloy plate, and the limit ricochet angle of titanium alloy target with different thickness was obtained. Simultaneously, LS-DYNA was used to simulate the armour-piercing projectile oblique penetrating titanium alloy target, and the validity of the model was verified by comparing with the experimental data. Then the influence of the incline angle and the thickness of the titanium alloy plate on the ballistic performance is discussed. It was shown that the penetration performance of armour-piercing projectile is effectively reduced with the increase of the inclination angle of the target plate. With the increase of the inclination angle of the target plate, the residual velocity and the angle of direction change of the projectiles after perforation decreases and increases, respectively. The critical ricochet angle of is related to the thickness of the target plate and decreases nonlinearly with the increase of the thickness of the target plate.

关键词

爆炸力学 / 斜侵彻 / 钛合金靶板 / 数值仿真

Key words

mechanics of explosion / oblique penetration / titanium alloy plate / numerical simulation

引用本文

导出引用
李钊 1, 孙旭光 1,周中锋 2. 穿甲弹斜侵彻钛合金靶板试验与数值模拟研究[J]. 振动与冲击, 2023, 42(23): 159-166
LI Zhao1,SUN Xuguang1,ZHOU Zhongfeng2. Tests and numerical simulation of oblique penetration of armour-piercing projectile into titanium alloy target[J]. Journal of Vibration and Shock, 2023, 42(23): 159-166

参考文献

[1] 曹贺全, 孙葆森, 徐龙堂, 等.装甲防护技术研究[M].北京:北京理工大学出版社, 2019.
CAO He-quan, SUN Bao-sen, XU Long-tang, et al. Research on armor protection technology[M]. Beijing: Beijing Institute of Technology Press, 2019.
[2] 曾毅,赵宝荣. 装甲防护材料技术[M]. 北京:国防工业出版社, 2014..
ZENG Yi, ZHAO Bao-rong. Armor protection material technology [M]. Beijing: National Defense Industry Press, 2014.
[3] 高瑞华, 范群波, 王富耻, 等.钛合金装甲材料动态压缩力学性能及其抗弹能力关系[J].稀有金属材料与工程,2015,44(11):2733-2736.
GAO Rui-hua, FAN Qun-bo, WANG Fu-chi, et al. Relationship between Dynamic Compressive Mechanical Properties and Ballistic Performance of Titanium Armor Materials[J]. Rare Metal Materials and Engineering, 2015, 44(11):2733-2736.
[4]  LEE D, KIM Y, NAM D.Dynamic deformation behavior and ballistic performance of Ti-6Al-4V alloy containing fine alpha_2 (Ti_3Al) precipitates[J].Materials Science and Engineering. A, Structural Materials, 2005, A391(1a2): 221-234.
[5] 李明兵, 王新南, 商国强, 等.双态组织TC32钛合金的抗弹性能及损伤机制[J].中国有色金属学报,2021,31(02):365-372.
LI Ming-bing, WANG Xin-nan, SHANG Guo-qiang, et al. Ballistic properties and failure mechanisms of TC32 titanium alloy with bimodal microstructure[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(2): 365−372.
[3] 高瑞华, 范群波, 王富耻, 等.钛合金装甲材料动态压缩力学性能及其抗弹能力关系[J].稀有金属材料与工程,2015,44(11):2733-2736.
GAO Rui-hua, FAN Qun-bo, WANG Fu-chi, et al. Relationship between Dynamic Compressive Mechanical Properties and Ballistic Performance of Titanium Armor Materials[J]. Rare Metal Materials and Engineering, 2015, 44(11):2733-2736.
[4]  LEE D, KIM Y, NAM D.Dynamic deformation behavior and ballistic performance of Ti-6Al-4V alloy containing fine alpha_2 (Ti_3Al) precipitates[J].Materials Science and Engineering. A, Structural Materials, 2005, A391(1a2): 221-234.
[5] 李明兵, 王新南, 商国强, 等.双态组织TC32钛合金的抗弹性能及损伤机制[J].中国有色金属学报,2021,31(02):365-372.
LI Ming-bing, WANG Xin-nan, SHANG Guo-qiang, et al. Ballistic properties and failure mechanisms of TC32 titanium alloy with bimodal microstructure[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(2): 365−372.
[6] SUKUMAR G, SINGH B, BHATTACHARJEE A, et al. Ballistic impact behaviour of β-CEZ Ti alloy against 7.62 mm armour piercing projectiles[J]. International Journal of Impact Engineering, 2013, 54:149-160.
[7]  ME-BAR Y, ROSENBERG Z. On the correlation between the ballistic behavior and dynamic properties of titanium-alloy plates[J]. International Journal of Impact Engineering, 1997, 19(4):311-318.
[8] 苗成, 刘江南, 钟涛, 等.钛合金板抗12.7mm穿甲燃烧弹厚度效应试验研究[J].兵器材料科学与工程, 2012, 35(5):68-70.
MIAO Cheng, LIU Jiang-nan, ZHONG Tao, et al. Thickness effect of titanium alloy plates against 12.7 mm API[J]. Ordnance Material Science and Engineering, 2012, 35(5):68-70.
[9] 郑超, 朱秀荣, 辛海鹰, 等,程兴旺,王富耻.厚度和层间界面对Ti6Al4V钛合金抗弹性能的影响[J].稀有金属材料与工程, 2019, 48(1):242-248.
ZHENG Chao, ZHU Xiu-rong, XIN Hai-ying, et al. Effects of Target Thickness and Macroscopic Interface on the Ballistic Performance of Ti6Al4V Titanium Alloy[J]. Rare Metal Materials and Engineering, 2019, 48(1):242-248.
[10] BARTUS S. Evaluation of Titanium-5Al-5Mo-5V-3Cr (Ti-5553) Alloy against fragment and armor-piercing projectiles[C]. U.S. Army Research Laboratory, 2009:5-9.
[11] 郝芳, 赵平洛, 毛友川, 等.钛合金J-C动态本构参数高精度分析及抗弹性能研究[J].稀有金属材料与工程, 2021, 50(12):4348-4356.
HAO Fang, ZHAO Ping-luo, MAO You-chuan, et al. High-Precision Analysis of J-C Dynamic Constitutive Parameters of Ti Alloy and Its Ballistic Performance[J]. Rare Metal Materials and Engineering, 2021, 50(12): 4348-4356.
[12] 魏刚, 冯岩, 张铁纯, 等.分层对TC4钛合金板抗平头弹撞击失效特性的影响[J].振动与冲击, 2021, 40(8):223-229.
WEI Gang, FENG Yan, ZHANG Tie-chun, et al. Influence of the layering on the impact failure characteristics of a TC4 titanium target against blunt nose projectile impact[J]. Journal of Vibration and Shock, 2021, 40(8):223-229.
[13]  惠旭龙, 刘小川, 王计真, 等.TC4钛合金平板高速撞击损伤及弹道极限特性[J].科学技术与工程, 2017, 17(11):1-8.
XI Xu-long, LIU Xiao-chuan, WANG Ji-zhen, et al. High velocity impact failure and ballistic performance of TC4 plate[J]. Science Technology and Engineering, 2017, 17(11):1-8.
[14] 罗通.纤维约束陶瓷复合靶板的制备及抗弹性能研究[D].北京: 北京理工大学, 2015.
LUO Tong. Study on the preparation process and anti-ballistic properties of ceramic composite targets confined by fiber [D]. Beijing, Beijing Institute of Technology, 2015.
[15] KILLC N, EKICI B. Ballistic resistance of high hardness armor steels against 7.62mm armor piercing ammunition[J]. Materials & Design, 2013, 44:35-48.
[16] 杨姝,于晨,康玉彪,等. N形装甲板抗穿甲弹侵彻性能数值模拟[J]. 振动与冲击, 2021, 40(16): 1-9.
YANG Shu,YU Chen,KANG Yubiao,et al. Numerical simulation of anti-penetration performance of an N-shaped armor plate against armor-piercing projectiles. Journal of Vibration and Shock, 2021, 40(16): 1-9.
[17] FLORES-JOHNSON E, SALEH M, EDWARDS L. Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile[J]. International Journal of Impact Engineering, 2011, 38(12):1022-1032.
[18] BORVIK T, DEY S, CLAUSEN A. Perforation resistance of five different high strength steel plates subjected to small-arms projectiles. International Journal of Impact Engineering, 2009, 36:948-964.
[19] WANG X, SHI J. Validation of Johnson-Cook plasticity and damage model using impact experiment[J]. International Journal of Impact Engineering, 2013, 60(10):67-75.
[20] EKICI, BULENT, BEDIR, et al. Optimization of high hardness perforated steel armor plates using finite element and response surface methods[J]. Mechanics of Advanced Materials and Structures, 2017, 24(7):615-624..
[21] GORFAIN J, KEY C. Damage prediction of rib-stiffened composite structures subjected to ballistic impact[J]. International Journal of Impact Engineering, 2013, 57:159-172.
[22] JOHNSON G, COOK W. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of seventh international symposium on ballistics. The Hague, The Netherlands; April 1983.
[23] BORVIK T, HOPPERSTAD O, BERSTAD T, et al. A computational model of viscoplasticity and ductile damage for impact and penetration. European Journal of Mechanics – A/Solids 2001;20(5):685–712.
[24]  ZUKAS J. Introduction to hydrocodes[M]. Elsevier; 2004.
[25] CHEN X,FAN S,LI Q. Oblique and normal perforation of concrete targets by a rigid projectile[J]. International Journal of Impact Engineering,2004, 30( 6): 617- 637..
[26] 黄岐,周彤,白洋,等. 弹丸变攻角侵彻间隔靶弹道极限研究[J]. 兵工学报,2016, 37(增刊2): 251-257.
HUANG Qi,ZHOU Tong,BAI Yang,et al. Ballistic performance of projectile penetrating large-spaced multi-layer plates at variable angle-of-attack[J]. Acta Armamentarii,2016,37 (S2): 251-257.
[27] SUNDARARAJAN S. The influence of plate hardness on the ballistic penetration of thick steel plates[J]. International Journal of Impact Engineering, 1995..
[28] CHEN X, LI Q, FAN S. Oblique perforation of thick metallic plates by rigid projectiles[J]. Acta Mechanica Sinica, 2006.22.367-376.
[29] CHEN X, LI Q. Perforation of a thick plate by rigid projectiles[J]. International Journal of Impact Engineering, 2003, 28(7):743-759.
[30] CHEN X, LI Q. Deep penetration of a non-deformable projectile with different geometrical characteristics[J]. International Journal of Impact Engineering, 2002, 27(6):619-637.

PDF(2602 KB)

Accesses

Citation

Detail

段落导航
相关文章

/