考虑RNA运行作用的近海风电结构主动质量阻尼器振动控制研究

白久林1, 2,李晨辉3,王宇航1, 2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 183-191.

PDF(2792 KB)
PDF(2792 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 183-191.
论文

考虑RNA运行作用的近海风电结构主动质量阻尼器振动控制研究

  • 白久林1, 2,李晨辉3,王宇航1, 2
作者信息 +

Active mass damper vibration control of offshore wind turbine structure considering RNA operation

  • BAI Jiulin1,2,LI Chenhui3,WANG Yuhang1,2
Author information +
文章历史 +

摘要

由于风电塔上部的风轮-机舱组件(Rotor-Nacelle Assembly, RNA)在运行状态中的非线性控制策略,风电塔顶加速度频响特征复杂,其中风轮3倍转频激励(3P)响应最为突出。本文考虑一种单自由度等效风电塔模型,通过OpenFAST软件确定RNA运行作用下的结构动力参数与气动荷载,开展了基于线性二次型调节(Linear Quadratic Regulator, LQR)算法的主动质量阻尼器(Active Mass Damper, AMD)对风电塔顶前后向加速度响应的控制研究,以被动调谐质量阻尼器(Tuned Mass Damper, TMD)为对照考察了AMD的减振性能与控制特点。结果表明:在RNA运行作用下,AMD具有比TMD更好的控制表现,其控制作用可一定程度抑制3P频段的响应。

Abstract

Due to the nonlinear control strategy of the wind turbine-nacelle assembly (RNA) in the upper part of the wind turbine, the acceleration response characteristics of the wind turbine tower top are complex, among which the 3-fold rotational excitation (3P) response of the wind turbine is the most prominent. This paper considered a single-degree-of-freedom equivalent wind turbine tower model, determined the structural dynamic parameters and input aerodynamic loads under RNA operation by OpenFAST, and carried out the control of wind turbine top for-aft acceleration response by Active Mass Damper (AMD) based on Linear Quadratic Regulator (LQR) algorithm. The damping performance and control characteristics of AMD were investigated in comparison with the passive tuned mass damper (TMD). The results show that AMD has better control performance than TMD under the action of RNA operation, and its control action can suppress the response of 3P band to some extent.

关键词

振动控制 / 风电结构 / 主动质量阻尼器 / RNA运行作用

Key words

Vibration control / wind turbine structure / Active Mass Dampers / RNA operation.

引用本文

导出引用
白久林1, 2,李晨辉3,王宇航1, 2. 考虑RNA运行作用的近海风电结构主动质量阻尼器振动控制研究[J]. 振动与冲击, 2023, 42(23): 183-191
BAI Jiulin1,2,LI Chenhui3,WANG Yuhang1,2. Active mass damper vibration control of offshore wind turbine structure considering RNA operation[J]. Journal of Vibration and Shock, 2023, 42(23): 183-191

参考文献

[1] 卢其进, 杨和振. 海洋风电支撑结构的随机性动力优化设计[J]. 振动与冲击, 2013(17): 62-67. LU Qi-jin, YANG He-zhen. Probabilistic dynamic optimization design for support structure of offshore wind turbines[J]. Journal of Vibration and Shock, 2013(17): 62-67. (in Chinese)
[2] 董霄峰, 练继建, 王海军. 运行状态下海上风机结构振源特性研究[J]. 振动与冲击, 2017, 36(17): 21-28. DONG Xiaofeng;LIAN Jijian;WANG Haijun; Vibration source features of offshore wind power structures under operational conditions[J]. Journal of Vibration and Shock, 2017, 36(17): 21-28. (in Chinese)
[3] Ahlström A. Influence of wind turbine flexibility on loads and power production. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 2006, 9(3): 237-249.
[4] Dueñas-Osorio L, Basu B. Unavailability of wind turbines due to wind-induced accelerations. Engineering Structures, 2008, 30(4): 885-893.
[5] Murtagh P J, Ghosh A, Basu B, et al. Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence[J]. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 2008, 11(4): 305-317.
[6] Lackner M A, Rotea M A. Passive structural control of offshore wind turbines[J]. Wind energy, 2011, 14(3): 373-388.
[7] Li J, Chen J Y, Chen X B. The analysis and application on the typhoon-induced vibration control of the wind turbine with a pendulum damper[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2013, 773: 193-198.
[8] Stewart G, Lackner M. Offshore wind turbine load reduction employing optimal passive tuned mass damping systems[J]. IEEE transactions on control systems technology, 2013, 21(4): 1090-1104.
[9] Stewart G M, Lackner M A. The impact of passive tuned mass dampers and wind–wave misalignment on offshore wind turbine loads[J]. Engineering structures, 2014, 73: 54-61.
[10] Sun C, Jahangiri V. Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper[J]. Mechanical Systems and Signal Processing, 2018, 105: 338-360.
[11] Jahangiri V, Sun C. Integrated bi-directional vibration control and energy harvesting of monopile offshore wind turbines[J]. Ocean Engineering, 2019, 178: 260-269.
[12] Sun C, Jahangiri V. Fatigue damage mitigation of offshore wind turbines under real wind and wave conditions[J]. Engineering Structures, 2019, 178: 472-483.
[13] 李万润,杨州,杜永峰.一种新型风电塔架结构用双向TMD风致响应减振控制研究[J].振动与冲击, 2021, 40(12):114-123. DOI:10.13465/j.cnki.jvs.2021.12.015.
LI Wanrun, YANG Zhou, DU Yongfeng. Wind induced vibration mitigation of wind turbine structures with a new bi-directional TMD [J]. Journal of Vibration and Shock, 2021,40(12):114-123. (in Chinese)
[14] Sarkar S, Chakraborty A. Optimal design of semiactive MR‐TLCD for along‐wind vibration control of horizontal axis wind turbine tower[J]. Structural Control and Health Monitoring, 2018, 25(2): e2083.
[15] Sarkar S, Chakraborty A. Development of semi-active vibration control strategy for horizontal axis wind turbine tower using multiple magneto-rheological tuned liquid column dampers[J]. Journal of Sound and Vibration, 2019, 457: 15-36.
[16] Rezaee M, Aly A M. Vibration control in wind turbines to achieve desired system‐level performance under single and multiple hazard loadings[J]. Structural Control and Health Monitoring, 2018, 25(12): e2261.
[17] 白久林, 李晨辉, 龚彦安, 王宇航. 考虑RNA运行作用的近海风电结构动力响应分析[J]. 工程力学. doi: 10.6052/j.issn.1000-4750.2021.06.0453. Bai Jiulin, Li Chenhui, Gong Yanan, Wang Yuhang. Dynamic response analysis of offshore wind turbine considering rotor-nacelle assembly (RNA) operation[J]. Engineering Mechanics. doi: 10.6052/j.issn.1000-4750.2021.06.0453(in Chinese)
[18] 白久林,李晨辉,龚彦安,王宇航,朱嵘华.风-浪-流-RNA 运行耦合作用下近海风电结构动态响应分析[J/OL]. 土木工程学报. https://doi.org/10.15951/j. tmgcxb. 21080804. Bai Jiulin, Li Chenhui, Gong Yanan, Wang Yuhang, Zhu Ronghua. Dynamic response analysis of offshore wind turbine under the coupling effects of wind, wave, current and RNA operation [J]. China Civil Engineering Journal. https://doi.org/10.15951/j.tmgcxb. 21080804. (in Chinese)
[19] Ghassempour M, Failla G, Arena F. Vibration mitigation in offshore wind turbines via tuned mass damper[J]. Engineering Structures, 2019, 183: 610-636.
[20] Chen Y, Jin X, Luo M, et al. Vibration reduction methods of large-scale wind turbines based on system-TMD coupled algorithm[J]. Ocean Engineering, 2021, 226: 108832.
[21] Chen Y, Jin X, Liu H, et al. Large scale wind turbine TMD optimization based on Blade-Nacelle-Tower-Foundation coupled model[J]. Ocean Engineering, 2021, 239: 109764.
[22] Xie S, Jin X, He J, et al. Applying multiple tuned mass dampers to control structural loads of bottom-fixed offshore wind turbines with inclusion of soil-structure interaction[J]. Ocean Engineering, 2020, 205: 107289.
[23] 欧进萍. 结构振动控制[M]. 科学出版社, 2003. Ou  Jin-Ping. Structural vibration control [M]. Science Press, 2003. (in Chinese)
[24] Jonkman J, Butterfield S, Musial W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2009.
[25] Martin O. L. Hansen. 风力机空气动力学[M]. 中国电力出版社, 2009. Martin O. L. Hansen. Wind turbine aerodynamics [M]. China Electric Power Press, 2009. (in Chinese)
[26] 冯又全, 陈俊岭. 采用加速度输入等效风力发电机组塔筒实测响应方法研究[J]. 石家庄铁道大学学报:自然科学版, 2011, 24(1):21-25. Feng Youquan, Chen Junling.  Study on Response Equivalence Between Base Acceleration and Wind Loads in Wind Turbine Tests [J]. Journal of Shijiazhuang Tiedao University(Natural Science) , 2011, 24(1):21-25. (in Chinese)
[27] Chen J, Liu Y, Bai X. Shaking table test and numerical analysis of offshore wind turbine tower systems controlled by TLCD[J]. Earthquake Engineering and Engineering Vibration, 2015, 14(1): 55-75.
[28] 席仁强, 许成顺, 杜修力, 许坤. 风-波浪荷载对海上风机地震响应的影响 [J]. 工程力学, 2020, 37(11): 58-68. Xi Renqiang, Xu Chengshun, Du Xiuli, Xu Kun. Effects of wind-wave loadings on the seismic response of offshore wind turbines [J]. Engineering Mechanics, 2020, 37(11): 58-68. (in Chinese)
[29] Jonkman J M, Buhl M L. FAST user's guide[M]. Golden, CO, USA: National Renewable Energy Laboratory, 2005.
[30] IEC 61400 -1. Wind turbines part 1: Design requirements[S]. Geneva, Switzerland: International Electrotechnical Commission, 2014.
[31] Jonkman B J, Buhl Jr M L. TurbSim user's guide[R]. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2006.
[32] Jonkman J M, Hayman G J, Jonkman B J, et al. AeroDyn v15 user’s guide and theory manual[J]. NREL Draft Report, 2015: 46.
[33] Den Hartog J P. Mechanical vibrations[M]. Courier Corporation, 1985.
[34] Ghassempour M, Failla G, Arena F. Vibration mitigation in offshore wind turbines via tuned mass damper[J]. Engineering Structures, 2019, 183: 610-636.
[35] Yang Y, Bashir M, Li C, et al. Mitigation of coupled wind-wave-earthquake responses of a 10 MW fixed-bottom offshore wind turbine[J]. Renewable Energy, 2020, 157: 1171-1184.

PDF(2792 KB)

Accesses

Citation

Detail

段落导航
相关文章

/