含裂纹圆拱的模态参数分析

熊峻巍1,2,卢文波1,2,王高辉1,2,刘义佳1,2,王洋1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 199-208.

PDF(2682 KB)
PDF(2682 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 199-208.
论文

含裂纹圆拱的模态参数分析

  • 熊峻巍1,2,卢文波1,2,王高辉1,2,刘义佳1,2,王洋1,2
作者信息 +

Modal parametric analysis of circular arch with cracks

  • XIONG Junwei1,2,LU Wenbo1,2,WANG Gaohui1,2,LIU Yijia1,2,WANG Yang1,2
Author information +
文章历史 +

摘要

基于圆拱振动微分方程,引入基于断裂力学的线弹簧模型,分析了含单裂纹圆拱的面内自由振动特性;基于摄动理论,揭示了不同裂纹位置和裂纹深度下结构的模态变化规律;同时结合有限元模型,对比了拱结构内、外侧裂纹对结构模态参数的不同影响。最后,利用损伤拱试验数据,检验了建立的含裂纹拱力学计算模型的适用性与可靠性。结果表明:在拱结构中,各阶模态对裂纹损伤的依赖性不同,当损伤靠近某阶振型峰值点或固定端时,该阶模态固有频率下降显著;同阶模态中拱外侧裂纹在振型峰值较大处对损伤敏感,而内侧裂纹在振型峰值较小处敏感。

Abstract

Based on the oscillatory differential equation of circular arches and the line-spring model from fracture mechanics, the in-plane free vibration characteristics of circular arches with single crack was studied. Based on the perturbation theory, modal variation laws of circular arches under different crack depth and crack position was analyzed. Then, the influence of inner cracks and outer cracks on structural modal parameters was discussed through FEM. Finally, the serviceability and reliability of the mechanical model of cracked arches proposed in this article were examined by comparing with the test data. It is revealed that the dependency of each order modal on crack damage is different. If the damage is close to the peak point of vibration mode or the fixed end of a certain order, the natural frequency of corresponding order decreases significantly. Besides, the outer crack is sensitive to damage near the relatively large peak while the inner crack is more sensitive near the relatively small peak.

关键词

裂纹圆拱 / 内外侧裂纹 / 面内自由振动 / 损伤识别 / 固有频率

Key words

cracked circular arches / inner and outer cracks / in-plane free vibration / damage identification / natural frequency

引用本文

导出引用
熊峻巍1,2,卢文波1,2,王高辉1,2,刘义佳1,2,王洋1,2. 含裂纹圆拱的模态参数分析[J]. 振动与冲击, 2023, 42(23): 199-208
XIONG Junwei1,2,LU Wenbo1,2,WANG Gaohui1,2,LIU Yijia1,2,WANG Yang1,2. Modal parametric analysis of circular arch with cracks[J]. Journal of Vibration and Shock, 2023, 42(23): 199-208

参考文献

[1] 项海帆, 刘光栋. 拱结构的稳定与振动[M]. 北京: 人民交通出版社,1991.
XIANG Haifan, LIU Guangdong. Stability and vibration of arch structure[M]. Beijing: People's Transportation Press, 1991. (in Chinese)
[2] Henrych J. The Dynamics of Arches and Frames[M]. New York: Elsevier Scientific Publishing Company,1981.
[3] 张晓敏, 盛天文, 张培源. 初应力拱侧向振动的固有频率[J]. 工程力学, 2004. 21(2): 178-182.
ZHANG Xiaomin, SHENG Tianwen, ZHANG Peiyuan. Natural frequencies of initially stressed arches in lateral vibration[J]. Engineering Mechanics, 2004, 21(2): 178-182. (in Chinese)
[4] 李万春, 滕兆春. 变曲率 FGM 拱的面内自由振动分析[J]. 振动与冲击, 2017. 36(9): 201-208.
LI Wanchun, TENG Zhaochun. In-plane free vibration analysis of FGM arches with variable curvature[J]. Journal of Vibration and Shock, 2017, 36(9): 201-208. (in Chinese)
[5] 赵章泳, 邱艳宇, 王明洋等. 弹性边界下圆弧拱的自由振动分析[J]. 振动与冲击, 2016. 35(21): 120-125.
ZHANG Zhangyong, QIU Yanyu, WANG Mingyang,et al. Free vibration analysis of arches under elastic support boundary conditions[J]. Journal of Vibration and Shock, 2016, 35(21): 120-125.( in Chinese)
[6] 杨洋, 童根树. 水平弹性支承圆弧钢拱的弹性屈曲分析[J]. 工程力学, 2011. 28(03): 9-16.
YANG Yang, TONG Genshu. In-plane elastic buckling of steel circular arches with horizontal spring support[J]. Engineering Mechanics, 2011, 28(03): 9-16.( in Chinese)
[7] 张紫祥, 刘爱荣, 黄永辉等. 集中荷载作用下弹性扭转约束层合浅拱的非线性面内稳定 [J]. 工程力学, 2020. 37(S1): 13-19+31.
 ZHANG Zixiang, LIU Airong, HUANG Yonghui, et al. Nonlinear in-plane buckling of rotationally restrained shallow laminated arches under a central concentrated load[J]. Engineering Mechanics, 2020, 37(S1): 13-19+31.( in Chinese)
[8] Babahammou A., Benamar R. A semi analytical method for in-plane free vibrations of arches with a variable curvature[J]. Materials Today: Proceedings, 2022. 59: 893-898.
[9] Caddemi S., Caliò I. Exact closed-form solution for the vibration modes of the Euler–Bernoulli beam with multiple open cracks[J]. 2009. 327(3-5): 473-489.
[10] Caddemi S., Caliò I., Marletta M. The non-linear dynamic response of the Euler–Bernoulli beam with an arbitrary number of switching cracks[J]. 2010. 45(7): 714-726.
[11] 欧阳煜, 李航, 楚鹏辉. 基于裂纹诱导弦挠度的梁开闭裂纹损伤识别[J]. 力学季刊, 2022. 43(1): 178-189.
 OUYANG Yu, LIHang, CHUPenghui. Switching Crack damage identification of beam based on crack⁃induced chord deflection[J]. Chinese Quarterly of Mechanics, 2022, 43(1): 178-189. ( in Chinese)
[12] Fu C. The effect of switching cracks on the vibration of a continuous beam bridge subjected to moving vehicles[J]. Journal of Sound and Vibration, 2015. 339: 157-175.
[13] 王永亮. 含裂纹损伤圆弧曲梁弹性屈曲的有限元网格自适应分析[J]. 工程力学, 2021. 38(02): 8-15+35.
WANG Yongliang. Adaptive mesh refinement analysis of finite element method for elastic buckling of cracked circularly curved beams[J]. Engineering Mechanics, 2021, 38(02): 8-15+35. (in Chinese)
[14] 贺远松, 唐文勇, 张圣坤. 含初缺陷损伤圆拱的动力屈曲[J]. 船舶力学, 2006. 10(5): 68-75.
HE Yuansong, TANG Wenyong, ZHANG Shengkun. Dynamic buckling of cracked circular arch with initial geometric imperfection subject to radius impact[J]. Journal of Ship Mechanics, 2006, 10(5): 68-75. (in Chinese)
[15] Eroglu U., Paolone A., Ruta G., et al. Exact closed-form static solutions for parabolic arches with concentrated damage[J]. Archive of Applied Mechanics, 2019. 90(4): 673-689.
[16] Cerri M.N., Dilena M., Ruta G.C. Vibration and damage detection in undamaged and cracked circular arches: Experimental and analytical results[J]. Journal of Sound and Vibration, 2008. 314(1-2): 83-94.
[17] Cerri M.N., Ruta G.C. Detection of localised damage in plane circular arches by frequency data[J]. Journal of Sound and Vibration, 2004. 270(1-2): 39-59.
[18] Cannizzaro F., Greco A., Caddemi S., et al. Closed form solutions of a multi-cracked circular arch under static loads[J]. International Journal of Solids and Structures, 2017. 121: 191-200.
[19] 韩西, 钟厉, 王志坚. 利用模态试验和有限元分析对拱结构进行损伤识别[J]. 仪器仪表学报, 2004. 25(4): 113-115+122.
 HAN Xi, ZHONG Li, WANG Zhijian. Damage identification in arch struture by modal test and nastran FEM[J]. Journal of Instrumentation, 2004, 25(4): 113-115+122. (in Chinese)
[20] 聂振华. 基于应变模态的圆拱结构损伤识别方法研究[D].暨南大学, 2008.
 NIE Zhenhua. The studies on damage detection of circular arch based on strain mode[D]. Ji'nan University, 2008.(in Chinese)
[21] 赵俊, 程良彦, 马宏伟. 基于曲率模态的拱板结构损伤识别[J]. 暨南大学学报 (自然科学版), 2008. 29(05): 470-477.
ZHAO Jun, CHENG Liangyan, MA Hongwei. The damage detection in the arch basing on the changes in curvature mode shape[J]. Journal of Jinan University ( Natural Science), 2008, 29(05): 470-477.(in Chinese)
[22] Liu H.W., Chu C.S. Cracked Columns under Compression Fixed Ends[J]. Engineering Fracture Mechanics, 1971. 3(3): 219-230.
[23] Chen M.C., Tang R.J. An Approximate Method of Response Analysis Ofvibrations for Cracked Beams[J]. Applied Mathematics and Mechanics, 1997. 18(3): 221-228.
[24] Okamura H., Liu H.W., Chu C.S. A cracked column under compression[J]. Engineering Fracture Mechanics, 1969. 1(3): 547-564.
[25] 董江, 文敏, 张强波等. 航空发动机测量耙裂纹故障诊断[J]. 振动、测试与诊断, 2022. 42(5): 937-979+1038.
 DONG Jiang, WEN Min, ZHANG Qiangbo, et al. Crack Diagnosis of Aero⁃engine Rake[J]. Journal of Vibration, Measurement & Diagnosis, 2022. 42(5): 937-979+1038.(in Chinese)
[26] 陈治江. 基于动力刚度法裂纹修正铁木辛柯梁研究[D].重庆交通大学, 2019.
CHEN Zhijiang. Study on the Modified Timoshenko Cracked Beam Based on Dynamic Stiffness Method[D]. Chongqing Jiaotong University, 2019.(in Chinese)
[27] Allemang R.J. The Modal Assurance Criterion (MAC): Twenty Years of Use and Abuse[J]. Spie Proceedings, 2003. 37(8): 14-23.
[28] Morassi A. Crack‐Induced Changes in Eigenparameters of Beam Structures[J]. Journal of Engineering Mechanics, 1993. 119(9): 1798-1803.
[29] Fan W., Qiao P. A strain energy-based damage severity correction factor method for damage identification in plate-type structures[J]. Mechanical Systems and Signal Processing, 2012. 28: 660-678.
 

PDF(2682 KB)

Accesses

Citation

Detail

段落导航
相关文章

/