本文通过分析具有脉冲效应(状态重置过程)的四次累积发放神经元模型的同宿分岔,研究了该系统周期解的存在性和稳定性。主要针对系统具有两个平衡点的情形,对系统鞍点附近的动力学行为进行了定性分析,研究了多种情况下系统的1-阶同宿环的存在性。以 为分岔参数,当系统发生同宿分岔后,利用脉冲动力系统理论及庞加莱映射的不动点理论,证明了不同情形下1-阶同宿环附近1-阶周期解的存在性和稳定性。最后,数值模拟了系统的周期解,验证了理论结果的正确性。本文所采用的方法提供了一种寻找脉冲动力系统周期解的策略。
Abstract
This paper studies the existence and stability of the periodic solution by analyzing the homoclinic bifurcation of the quartic integrate-and-fire(IF) neuron model with impulse effect (state reset process).We mainly aim at the system has two equilibrium points, qualitatively analyze the dynamic behavior near the saddle point of the system, and investigate the existence of the order-1 homoclinic cycle of the system in different cases. With as the bifurcation parameter, when the system occurs homoclinic bifurcation, the existence and stability of the order-1 periodic solutions near the order-1 homoclinic cycle in different cases are proved by using the theory of impulsive dynamic system and the fixed point theory of the Poincaré map. Finally, the periodic solutions of the system are simulated numerically to verify the theoretical results.The approach employed in this paper provides a strategy for finding periodic solutions to impulse dynamical systems.
关键词
四次累积发放神经元模型 /
脉冲效应 /
1-阶同宿环 /
同宿分岔 /
1-阶周期解
{{custom_keyword}} /
Key words
quartic integrate-and-fire neuron model /
impulse effort /
order-1 homoclinic cycle /
homoclinic bifurcation /
order-1 periodic solution
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of physiology, 1952, 117(4): 500.
[2] Brette R, Gerstner W. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of neurophysiology, 2005, 94(5): 3637-3642.
[3] Izhikevich E M, Edelman G M. Large-scale model of mammalian thalamocortical systems. Proceedings of the national academy of sciences, 2008, 105(9): 3593-3598.
[4] Touboul J. Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons[J]. SIAM Journal on Applied Mathematics, 2008, 68(4): 1045-1079.
[5] Fen M O, Fen F T. Homoclinic and heteroclinic motions in hybrid systems with impacts[J]. Mathematica Slovaca, 2017, 67(5): 1179-1188..
[6] Guan, Zhi-Hong, David J. Hill, and Jing Yao. "A hybrid impulsive and switching control strategy for synchronization of nonlinear systems and application to Chua's chaotic circuit." International Journal of Bifurcation and Chaos 16.01 (2006): 229-238.
[7] Acary V, Bonnefon O, Brogliato B. Time-stepping numerical simulation of switched circuits within the nonsmooth dynamical systems approach[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2010, 29(7): 1042-1055.
[8] 陈兰荪. 害虫治理与半连续动力系统几何理论[J]. 北华大学学报: 自然科学版, 2011, 12(1): 1-9.
CHEN Lansun. Pest Control and Geometric Theory of Semi-Continuous Dynamical System [J]. Journal of Beihua University(Natural Science), 2011, 12(1): 1-9.
[9] Wei C, Chen L. Homoclinic bifurcation of prey–predator model with impulsive state feedback control[J]. Applied Mathematics and Computation, 2014, 237: 282-292.
[10] Tian Y, Sun K, Chen L. Modelling and qualitative analysis of a predator–prey system with state-dependent impulsive effects[J]. Mathematics and Computers in Simulation, 2011, 82(2): 318-331.
[11] Gao C, Li K, Feng E, et al. Nonlinear impulsive system of fed-batch culture in fermentative production and its properties[J]. Chaos, Solitons & Fractals, 2006, 28(1): 271-277.
[12] Tang S, Cheke R A. State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences[J]. Journal of Mathematical Biology, 2005, 50(3): 257-292.
[13] Yang Y, Liao X, Dong T. Period-adding bifurcation and chaos in a hybrid Hindmarsh-Rose model[J]. Neural networks: the official journal of the International Neural Network Society, 2018, 105: 26-35.(24)
[14] He Z, Li C, Chen L, et al. Dynamic behaviors of the FitzHugh–Nagumo neuron model with state-dependent impulsive effects[J]. Neural Networks, 2020, 121: 497-511. (23)
[15] Li Y, Li C, He Z, et al. The Existence and Stability Analysis of Periodic Solution of Izhikevich Model[J]. International Journal of Control, Automation and Systems, 2020, 18(5): 1161-1176.(25)
[16] Simeonov P S, Bainov D D. Orbital stability of periodic solutions of autonomous systems with impulse effect[J]. 1988.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}