基于FxRLS自适应逆补偿的振动控制策略研究

王敏 1,2,廖松泉 1,钟雨轩 1,3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 215-222.

PDF(3227 KB)
PDF(3227 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 215-222.
论文

基于FxRLS自适应逆补偿的振动控制策略研究

  • 王敏 1,2,廖松泉 1,钟雨轩 1,3
作者信息 +

Vibration control strategy based on FxRLS adaptive inverse compensation

  • WANG Min1,2,LIAO Songquan1,ZHONG Yuxuan1,3
Author information +
文章历史 +

摘要

为满足航天器中搭载的高精度设备对振动环境要求的不断提高,提出将滤波-x最小均方(Filtered-X Recursive Least Square,FxRLS)自适应算法与逆补偿方法结合应用于隔振系统中。首先从系统动力学模型和自适应逆补偿算法两方面展开了理论分析,通过FxRLS自适应控制对系统响应进行精确跟踪,利用逆补偿控制对系统振动进行主动消除。为验证控制策略的有效性,在Simulink和实验环境中,搭建了验证系统。结果表明:对不同激励信号下的跟踪性能及振动消除效果进行仿真分析,自适应逆补偿输出的控制信号能够有效跟踪负载端振动信号,跟踪率最高可达99.97%。相比滤波-x最小递归二乘(Filtered-X Least Mean Square,FxLMS),FxRLS在跟踪速度和跟踪精度两方面的综合性能更优。应用FxRLS自适应逆补偿控制后,实验显示随机扰动隔振率达到了66.7%。实验与仿真结果都证明了本文控制策略的有效性。
关键词:振动隔离;自适应算法;逆补偿控制。

Abstract

To meet the increasing requirement of ultra-precision equipment carried in spacecraft for environmental vibration, the combination of Filtered-X Recursive Least Square (FxRLS) adaptive algorithm and inverse compensation method was proposed. Firstly, theoretical analysis was carried out from the dynamics model of isolator and adaptive inverse compensation. FxRLS was used to accurately track the response, and the inverse compensation was used to actively eliminate the vibration. To verify the effectiveness of this control strategy, verification systems were built in Simulink and experiment respectively. The results show that the control output can effectively track the vibration signal of payload under different excitations, and the tracking ratio can reach up to 99.97%. Compared with Filtered-X Least Mean Square (FxLMS), FxRLS has better comprehensive performance in tracking speed and tracking accuracy. In the experiment, the isolation ratio of random disturbance reaches 66.7% after applying FxRLS adaptive inverse compensation. Experimental and simulation results both prove the effectiveness of this control strategy.

关键词

振动隔离 / 自适应算法 / 逆补偿控制 / 跟踪控制

Key words

vibration isolation / adaptive algorithm / inverse compensation control / tracking control

引用本文

导出引用
王敏 1,2,廖松泉 1,钟雨轩 1,3. 基于FxRLS自适应逆补偿的振动控制策略研究[J]. 振动与冲击, 2023, 42(23): 215-222
WANG Min1,2,LIAO Songquan1,ZHONG Yuxuan1,3. Vibration control strategy based on FxRLS adaptive inverse compensation[J]. Journal of Vibration and Shock, 2023, 42(23): 215-222

参考文献

[1] ZHANG F, SHAO S, TIAN Z, et al. Active-passive hybrid vibration isolation with magnetic negative stiffness isolator based on Maxwell normal stress[J]. Mechanical Systems and Signal Processing, 2019, 123: 244-263.
[2] WANG C, CHEN Y, ZHANG Z. Simulation and experiment on the performance of a passive/active micro-vibration isolator[J]. Journal of Vibration and Control, 2018, 24(3): 453-465.
[3] PENG F, GU M, NIEMANN H J. Study on Sinusoidal Reference Strategy-Based Adaptive Feedforward Control Applied to Benchmark Wind-Excited Building[J]. Journal of Engineering Mechanics, 2004, 130(4): 518-523.
[4] PREUMONT A, HORODINCA M, ROMANESCU I, et al. A six-axis single-stage active vibration isolator based on Stewart platform[J]. Journal of Sound and Vibration, 2007, 300(3-5): 644-661.
[5] PENA-ALZOLA R, LISERRE M, BLAABJERG F, et al. Systematic Design of the Lead-Lag Network Method for Active Damping in LCL-Filter Based Three Phase Converters[J]. IEEE Transactions on Industrial Informatics, 2014, 10(1): 43-52.
[6] SEBA B, NEDELJKOVIC N, PASCHEDAG J, et al. H∞ Feedback control and Fx-LMS feedforward control for car engine vibration attenuation[J]. Applied Acoustics, 2005, 66(3): 277-296.
[7] ZUO L, SLOTINE J J E, NAYFEH S A. Model reaching adaptive control for vibration isolation[J]. IEEE Transactions on Control Systems Technology, 2005, 13(4): 611-617.
[8] BURKAN R, ÖZGÜNEY Ö C, ÖZBEK C. Model reaching adaptive-robust control law for vibration isolation systems with parametric uncertainty[J]. Journal of Vibroengineering, 2018, 20(1): 300-309.
[9] YAN T H, PU H Y, CHEN X D, et al. Integrated hybrid vibration isolator with feedforward compensation for fast high-precision positioning X / Y tables[J]. Measurement Science and Technology, 2010, 21(6): 065901.
[10] HILLIS A J, HARRISON A J L, STOTEN D P. A comparison of two adaptive algorithms for the control of active engine mounts[J]. Journal of Sound and Vibration, 2005, 286(1-2): 37-54.
[11] 赵剑, 徐健, 李晓东, 等. 基于多模型的自适应有源噪声控制算法研究[J]. 振动工程学报, 2007(6): 549-555.
ZHAO Jian, XU Jian, LI Xiao-dong, et al. An adaptive active noise control algorithm using multiple models[J]. Journal of Vibration Engineering, 2007(6): 549-555.
[12] CARNAHAN J J, RICHARDS C M. A Modification to Filtered-X LMS Control for Airfoil Vibration and Flutter Suppression[J]. Journal of Vibration and Control, 2008, 14(6): 831-848.
[13] ABHISHEK R, RAMESH V. Acoustic Noise Cancellation by NLMS and RLS Algorithms of Adaptive Filter[J]. International Journal of Science and Research, 2015, 4(5): 198-202.
[14] 梁青, 段小帅, 陈绍青, 等. 基于滤波x-LMS算法的磁悬浮隔振器控制研究[J]. 振动与冲击, 2010, 29(7): 201-203,246.
LIANG Qing, DUAN Xiao-shuai, CHEN Shao-qing, et al. Control of electromagnetic suspension vibration isolator based on filtered x - LMS algorithm[J]. Journal of Vibration and Shock, 2010, 29(7): 201-203,246.
[15] WANG C, XIE X, CHEN Y, et al. Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators[J]. Journal of Sound and Vibration, 2016, 383: 1-19.
[16] 罗顺安, 张锋, 汪涵. FxRLS算法在齿轮箱振动主动控制中的应用[J]. 噪声与振动控制, 2018, 38(4): 123-127.
LUO Shun-an, ZHANG Feng, WANG Han. Application of FxRLS Algorithm in Gear-box Active Vibration Control[J]. Noise and Vibration Control, 2018, 38(4): 123-127.
[17] MONTAZERI A, POSHTAN J. A new adaptive recursive RLS-based fast-array IIR filter for active noise and vibration control systems[J]. Signal Processing, 2011, 91(1): 98-113.
[18] YI S, JUNWEI W, PEILUN Y, et al. An active hybrid control approach with the Fx-RLS adaptive algorithm for active-passive isolation structures[J]. Smart Materials and Structures, 2020, 29(10): 105005.
[19] VICENTE L, MASGRAU. Novel FxLMS Convergence Condition With Deterministic Reference[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 3768-3774.
[20] TABATABAEI ARDEKANI I, ABDULLA W H. Theoretical convergence analysis of FxLMS algorithm[J]. Signal Processing, 2010, 90(12): 3046-3055.

PDF(3227 KB)

Accesses

Citation

Detail

段落导航
相关文章

/