高速列车轮轨噪声控制的新型声屏障设计方法研究

张小安1,宋杲1,曹兴潇1,朱胜阳2,杨建近2,张晓芸1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 231-239.

PDF(4143 KB)
PDF(4143 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 231-239.
论文

高速列车轮轨噪声控制的新型声屏障设计方法研究

  • 张小安1,宋杲1,曹兴潇1,朱胜阳2,杨建近2,张晓芸1
作者信息 +

Design method of new type sound barrier for wheel-rail noise control of high-speed train

  • ZHANG Xiao’an1,SONG Gao1,CAO Xingxiao1,ZHU Shengyang2,YANG Jianjin2,ZHANG Xiaoyun1
Author information +
文章历史 +

摘要

我国轨道交通的基础建设已得到了快速的发展。随着新版《中华人民共和国噪声污染防治法》的实施,轨道交通对于沿线声环境的污染防治也将成为后期重点关注的问题之一因此有必要提高轨道交通重要降噪设备声屏障在隔声性能方面的要求。本文针对轨道交通轮轨噪声的频段范围,基于Bragg带隙机理提出了三种针对轨道交通轮轨噪声的新型的二维气-固声子晶体型能带结构设计方案,分析了三种设计方案对应的带隙特性,并通过声传递损失评价了三种设计方案的隔声效果。研究表明,本文结合声子晶体理论设计的能带结构排布方式,能够对特定频段内的轮轨噪声形成高效的阻隔;通过合理设计散射体的布置形式和几何参数,可进一步实现特定多频段的有效隔声;因此将本文提出的方案应用于声屏障设计,能够有针对性地提升声屏障的隔声性能。

Abstract

China's rail transit infrastructure has been rapid development. With the implementation of the new version of the "Law of the People's Republic of China on Prevention and Control of Noise Pollution, the pollution prevention and control of the acoustic environment along the rail transit will become one of the key issues in the later stage. Therefore, it is necessary to improve the sound insulation performance requirements of the sound barrier of the important noise reduction equipment of rail transit.This paper proposes three new two-dimensional gas-solid phonon crystal type energy band structure design schemes for rail transit wheel track noise based on the Bragg band gap mechanism, analyzes the band gap characteristics of the three design schemes, and describes the sound insulation effect of the three design schemes through the sound transmission loss.The results show that the band structure arrangement designed in this paper based on phononic crystal theory can effectively block wheel-rail noise in a specific frequency band. By designing the arrangement and geometric parameters of scatterers reasonably, effective sound insulation can be further achieved in specific multi-frequency bands. Therefore, applying the proposed scheme to the sound barrier design can effectively improve the sound insulation performance of the sound barrier.

关键词

轨道交通 / 声屏障 / 声子晶体 / 隔声性能 / 带隙特性

Key words

Rail transit / Sound barrier / Phononic crystal / Sound insulation performance / Band gap characteristics

引用本文

导出引用
张小安1,宋杲1,曹兴潇1,朱胜阳2,杨建近2,张晓芸1. 高速列车轮轨噪声控制的新型声屏障设计方法研究[J]. 振动与冲击, 2023, 42(23): 231-239
ZHANG Xiao’an1,SONG Gao1,CAO Xingxiao1,ZHU Shengyang2,YANG Jianjin2,ZHANG Xiaoyun1. Design method of new type sound barrier for wheel-rail noise control of high-speed train[J]. Journal of Vibration and Shock, 2023, 42(23): 231-239

参考文献

[1] 张小安,翟婉明,石广田,等. 城市轨道交通直壁式声屏障车致振动声辐射机理[J]. 铁道学报,2021,43(07):128-137.
Zhang Xiaoan, Zhai Wanming, Shi Guangtian, et al. Mechanism of vehicle induced vibration and sound radiation of straight wall sound barrier in urban rail transit [J]. Journal of railway, 2021,43 (07): 128-137.
[2] 中华人民共和国噪声污染防治法[J]. 中华人民共和国全国人民代表大会常务委员会公报,2022(01):58-68.
Law of the people's Republic of China on the prevention and control of noise pollution [J]. Bulletin of the Standing Committee of the National People's Congress of the people's Republic of China, 2022 (01): 58-68.
[3] 牛亚文,赵才友,易 强,等. 可实现宽频隔声的全向通风铁路声屏障[J].浙江大学学报(工学版),2021,55(06):1048-1055.
Niu Yawen, Zhao Caiyou, Yi Qiang, et al. Omnidirectional ventilation railway sound barrier that can realize broadband sound insulation [J]. Journal of Zhejiang University (Engineering Science), 2021,55 (06): 1048-1055.
[4] 张良涛. 市域铁路声屏障设置研究[J]. 中国铁路,2018(08):107-112.
Zhang liangtao. Research on the setting of urban railway sound barrier [J]. China Railway, 2018 (08): 107-112.
[5] 苏卫青. 铁路声屏障设计综述[J]. 铁道工程学报,2018,35(08):86-91.
Su Weiqing. Overview of railway sound barrier design [J]. Journal of railway engineering, 2018,35 (08): 86-91.
[6] Thompson D . Railway Noise and Vibration[J]. Railway Noise & Vibration, 2013:501–518.
[7] 吴九汇,马富银,张思文,等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报,2016,52(13):68-78.
Wu Jiuhui, Ma Fuyin, Zhang Siwen, et al. .Review on the application of acoustic metamaterials in low frequency vibration and noise reduction [J]. Journal of mechanical engineering, 2016,52 (13): 68-78.
[8] Li Y , Zhang Y , Xie S. A lightweight multilayer honeycomb membrane-type acoustic metamaterial[J]. Applied Acoustics, 2020, 168.
[9] Zhao X, Liu G, Xia D. Maze-like acoustic metamaterial for low-frequency broadband noise suppression[J]. Applied Physics Express, 2020, 13(2):027002 (5pp).
[10] M, S, Kushwaha, et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993.
[11] 温熙森. 声子晶体[M]. 国防工业出版社,2009.
Wen XISEN. Phononic crystal [M].  National Defense Industry Press, 2009.
[12] Zhao H ,  Liu Y, Wen J, et al. Dynamics and sound attenuation in viscoelastic polymer containing hollow glass microspheres[J]. Journal of Applied Physics,2007, 101(12):1527.
[13] 易 强,王宇航,高鑫,等. 轨道交通周期型声屏障带隙特性及其降噪性能[J]. 中南大学学报(自然科学版),2019,50(05):1263-1270.
Yi Qiang, Wang Yuhang, Gao Xin, et al. Band gap characteristics and noise reduction performance of periodic sound barrier for rail transit [J]. Journal of Central South University (NATURAL SCIENCE EDITION), 2019,50 (05): 1263-1270.
[14] 秦晓春,倪安辰,韩莹,等. 声子晶体型高速公路声屏障的降噪性能[J]. 中国环境科学,2020,40(12):5493-5501.
Qin Xiaochun, Ni Anchen, Han Ying, et al. Noise reduction performance of phononic crystal type highway sound barrier [J]. China Environmental Science, 2020,40 (12): 5493-5501.
[15] 王 颖. 层状周期性结构在地铁隔振中的应用[D]. 北京:北京交通大学,2014.
Wang Ying. Application of layered periodic structure in subway vibration isolation [D]. Beijing:Beijing Jiaotong University, 2014.
[16] Huang J, Shi Z.  Attenuation zones of periodic pile barriers and its application in vibration reduction for plane waves[J]. Journal of Sound & Vibration, 2013, 332(19):4423-4439.
[17] Li T, Su Q,Kaewunruen S. Seismic metamaterial barriers for ground vibration mitigation in railways considering the train-track-soil dynamic interactions[J]. Construction and Building Materials, 2020, 260.
[18] Kushwaha M S ,  Halevi P, G Martínez, et al. Theory of acoustic band structure of periodic elastic composites[J]. Physical Review B, 1994.
[19] He Bin,Xiao Xinbiao,Zhou Qiang,et al. Investigation into External Noise of a High-speed Train at Different Speeds[J] Journal of Zhejiang University-Science A( Applied Physics& Engineering),2014 ( 12) :1019 -1033.
[20] 圣小珍,成功,THOMPSON D J,等. 轮轨噪声预测模型研究进展[J]. 交通运输工程学报,2021,21(03):20-38.
Sheng Xiaozhen, Cheng Cheng, THOMPSON D J, et al. Research progress of wheel rail noise prediction model [J]. Journal of Transport Engineering, 2021,21 (03): 20-38.
[21] 王东镇,葛剑敏. 高速列车不同转向架区噪声特性及主要噪声源分离[J].同济大学学报(自然科学版),2020,48(06):904-912.
Wang Dongzhen, Ge Jianmin. Noise characteristics of different bogie areas of high-speed trains and separation of main noise sources [J]. Journal of Tongji University (Natural Science Edition), 2020,48 (06): 904-912.
[22] 何 宾. 高速铁路矮屏障降噪性能测试与优化分析[J]. 铁道工程学报,2019,36(02):75-80.
He bin. Noise reduction performance test and optimization analysis of low barrier in high-speed railway [J]. Journal of railway engineering, 2019,36 (02): 75-80.
[23] 韩 莹. 高速公路周期性阵列式声子晶体型声屏障声学结构及降噪性能研究[D]. 北京:北京交通大学,2019.
Han Ying. Study on acoustic structure and noise reduction performance of periodic array phononic crystal type sound barrier on Expressway [D]. Beijing:Beijing Jiaotong University, 2019.
[24] 唐荣江,潘朝远,郑伟光,等. 开口圆环类声子晶体传播禁带特性研究[J]. 人工晶体学报,2021,50(03):428-434..
Tang Rongjiang, pan Chaoyuan, Zheng Weiguang, et al. Study on the propagation band gap characteristics of open ring phononic crystals [J].  Journal of intraocular lens, 2021,50 (03): 428-434.

PDF(4143 KB)

Accesses

Citation

Detail

段落导航
相关文章

/