单流体空化模型在水下爆炸诱导空化问题中的对比分析

金泽宇 1, 殷彩玉 2,孔祥韶 1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 276-283.

PDF(2414 KB)
PDF(2414 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 276-283.
论文

单流体空化模型在水下爆炸诱导空化问题中的对比分析

  • 金泽宇 1, 殷彩玉 2,孔祥韶 1
作者信息 +

Contrastive analysis of single fluid cavitation models in underwater explosion induced cavitation

  • JIN Zeyu1,YIN Caiyu2,KONG Xiangshao1
Author information +
文章历史 +

摘要

在龙格库塔间断伽辽金数值框架下建立了空化截断、修正的Schmidt和等熵空化流三种单流体空化模型,应用于水下冲击波与浮在自由面平板相互作用、水下冲击波与弹性支撑平板相互作用及水下冲击波与水背衬平板相互作用三个实例中。对比分析三种不同空化模型计算获得的流体和结构响应,得到单流体空化模型应用在水下爆炸问题时,饱和蒸汽压、输入载荷强度等因素对不同空化模型计算结果的影响。该结果对应用单流体模型求解水下爆炸问题提供依据。

Abstract

Three one-fluid cavitation models - cut off model, modified Schmidt model and isentropic cavitation model, are established in a numerical framework of the Runge Kutta Discontinuous Galerkin method. Applications of three different cavitation models in the interaction problems between underwater blast and a plate floating at the free surface, between underwater blast and a plate with elastic foundation and between underwater blast and a water backed plate are conducted. The influences of the saturated vapor pressures and input load strengths on the performances of the cavitation models in the fluid and structural response are discussed. The results provide a basis for solving the underwater explosion problem by using the one fluid model.

关键词

水下爆炸 / 流体空化 / 动力响应 / 数值分析

Key words

underwater explosion / cavitation / dynamic response / numerical analysis

引用本文

导出引用
金泽宇 1, 殷彩玉 2,孔祥韶 1. 单流体空化模型在水下爆炸诱导空化问题中的对比分析[J]. 振动与冲击, 2023, 42(23): 276-283
JIN Zeyu1,YIN Caiyu2,KONG Xiangshao1. Contrastive analysis of single fluid cavitation models in underwater explosion induced cavitation[J]. Journal of Vibration and Shock, 2023, 42(23): 276-283

参考文献

[1] Kennard E H. Cavitation in an elastic liquid [J]. Phys. Rev., 1943, 63 (5-6): 172–181.
[2] Bleich H H, Sandler I S. Interaction between structures and bilinear fluids [J]. Int. J. Solid Struct., 1970, 6 (5): 617-639.
[3] Schiffer A, Tagarielli V L, Petrinic N, Cocks A F C. The response of submerged rigid plates to blast loading: analytical models and finite element predictions [J]. J. Appl. Mech., 2012, 79: 061014.
[4] Jin Z, Yin C, Chen Y, et al. One-dimensional analytical model for the response of elastic coatings to water blast [J]. J. Fluid Struct. 2015, 59: 37-56.
[5] 殷彩玉, 金泽宇, 谌勇, 等. 多孔覆盖层水下爆炸流固耦合分析[J]. 振动与冲击, 2017, 36(12): 7-11.
YIN Cai-yu, JIN ze-yu, CHEN, yong, et al. Fluid-structure interaction effects of cellular claddings to underwater explsion [J]. Journal of vibration and shock, 2017, 36(12): 7-11.
[6] Schiffer A, Tagarielli V L. The response of rigid plates to blast in deep water: fluid-structure interaction experiments [J]. Proc. Math. Phys. Eng. Sci., 2012, 468(2145): 2807-2828.
[7] Feng H, HuangW, Deng S, et al. Dynamic fluid-structure interaction of graded foam core sandwich plates to underwater blast [J]. International Journal of Mechanical Sciences, 2022, 231: 107557.
[8] Chiapolino A, Boivin P, Saurel R. A simple and fast phase transition relaxation solver for compressible multicomponenet two-phase flows [J]. Computers & Fluids, 2017, 150: 31-45.
[9] 余 俊,王海坤,刘建湖,等.基于相变松弛法则的水下爆炸空化模型研究[J].计算力学学报,2022, 39(5): 684-690.
YU Jun, WANG Hai-kun, LIU Jian-hu, et al. Research on cavitation model of underwater explosion based on phase transition relaxation algorithm [J]. Chinese Journal of Computational Mechanics, 2022, 39(5): 684-690.
[10] Pelanti M, Shyue K M. A mixture-energy-consistent six-equation two-phase numercial model for fluids with interfaces, cavitation and evaporation waves [J]. Journal of Compuational Physics, 2014, 259: 331-357.
[11] Zhang J. A simple and effective five-equation two-phase numerical model for liquid-vapor phase transition in cavitating flows [J]. International Journal of Multiphase Flow, 2020, 132: 103417.
[12] Xie W F, Liu T G, Khoo B C. Application of a one-fluid model for large scale homogeneous unsteady cavitation: the modified Schmidt model [J]. Comput. Fluids, 2006, 35(10): 1177-1192.
[13] Liu T G, Khoo B C, Xie W F. Isentropic one-fluid modelling of unsteady cavitating flow. J. Comput. Phys., 2004, 201(1): 80-108.
[14] Jin Z, Yin C, Chen Y, et al. Study on the cavitation effects induced by the interaction between underwater blast and various boundaries [J]. Ocean Engineering, 2021, 222, 108596.
[15] Wu W, Liu Y L, Zhang A M, et al. An h-adaptive local discontinuous Galerkin method for second order wave equation: Applications for the underwater explosion shock hydrodynamics [J]. Ocean Engineering, 2022, 264, 13: 112526.
[16] Fu M, Lu T A. General Cavitation Model for the Highly Nonlinear Mie-Grüneisen Equation of State. Numerical Mathematics: Theory, Methods & Applications, 2021, 14(4): 1110-1135.

PDF(2414 KB)

Accesses

Citation

Detail

段落导航
相关文章

/