为研究Q460高强钢交错孔板疲劳损伤后的残余力学性能,进行了9组共36个Q460高强钢试件的高周疲劳试验与疲劳损伤后静力拉伸试验,探讨了加载系数、损伤因子和交错孔数量等因素,对交错孔板破坏模式、荷载-位移曲线、承载力和应变分布模式等的影响规律。研究表明:当损伤因子增加到0.45时,三交错孔板试件的断裂路径与理论屈服线路径存在明显差异,且断裂面不规则;一定范围内增大损伤因子,多交错孔板的变形能力呈增加趋势,但试件较早出现承载能力突降等劣化现象。加载系数对多交错孔板极限承载力的影响程度与损伤因子密切相关;随着开孔数量增多,疲劳损伤对试件的承载力影响越大。基于AISC/ANSI 360-16和EN 1993-1-8规范,建立了考虑疲劳损伤的Q460高强钢多交错孔板残余承载力预测模型,该模型与试验结果吻合较好,可较好地反映疲劳损伤对多交错孔板试件承载力的影响规律。研究成果可为高强钢结构性能可靠性评估提供试验和理论依据。
Abstract
In order to study the residual mechanical performance of the staggered-hole plates with Q460 high strength steel (HSS) after fatigue damage, the high cycle fatigue tests and static tensile tests after fatigue damage including 9 groups of 36 specimens with Q460 HSS were conducted. The tests considered the influences of loading coefficient (K), damage parameter (D) and number of staggered holes, i.e., and the influence of these factors on the failure mode, load-displacement curve, bearing capacity and strain distribution mode of the staggered hole plates using Q460 HSS were studied. The results showed that when the parameter D was increased to 0.45, the fracture path of the 3-staggered-hole plates was obviously different from the theoretical yield path, and the fracture surface was irregular; with the increase of the D in a certain range, the deformation capacity of the multi-staggered-hole plate tended to increase, but the bearing capacity of the specimens decreased suddenly earlier. The influence of the K on the bearing capacity of multi-staggered-hole plates was closely related to the parameter D; With the increase of the number of holes, the fatigue damage had a greater impact on the bearing capacity of the specimens. Based on AISC/ANSI 360-16 and EN 1993-1-8 codes, a prediction model for the residual bearing capacity of the multi-staggered-hole plates with Q460 HSS considering fatigue damage was established. The model was in good agreement with the test results, and can better reflect the influence of fatigue damage on the bearing capacity of the multi-staggered-hole plates using Q460 HSS. The research results can provide experimental and theoretical basis for the performance reliability evaluation of high strength steel structures.
关键词
高强钢 /
交错孔板 /
疲劳损伤 /
破坏模式 /
承载力
{{custom_keyword}} /
Key words
high strength steel /
staggered-hole plate /
fatigue damage /
failure mode /
bearing capacity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 施刚, 朱希. 国产高强度结构钢设计指标和可靠度分析[J]. 建筑结构学报, 2016, 37(11): 144-159.
SHI Gang, ZHU Xi. Design indexes and reliability analysis of domestic high-strength structural steels[J]. Journal of Building Structures, 2016, 37(11): 144-159.
[2] 郭宏超, 毛宽宏, 万金怀, 等. 高强度钢材疲劳性能研究进展[J]. 建筑结构学报, 2019, 40(4): 17-28.
GUO Hongchao, MAO Kuanhong, WAN Jinhuai, et al. Research progress on fatigue properties of high strength steels [J]. Journal of Building Structures, 2019, 40(4): 17-28.
[3] 施刚, 张建兴. 高强度结构钢材Q460D的疲劳性能试验研究[J]. 工业建筑, 2014, 44(03): 6-10.
SHI Gang, ZHANG Jianxing. Fatigue test of high strength steel Q460D[J]. Industrial Construction, 2014, 44(03): 6-10.
[4] 童乐为, 陈路华, 文铭, 等. Q690高强钢-超高性能混凝土抗剪连接件疲劳性能试验研究[J]. 建筑结构学报, 2023, 44(01): 289-299.
TONG Lewei, CHEN Luhua, WEN Ming, et al. Experimental study on fatigue behavior of shear connectors in Q690 high strength steel-UHPC composite beams[J]. Journal of Building Structures, 2023, 44(01): 289-299.
[5] 宗亮, 郭世超, 廖小伟, 等. Q690D高强钢疲劳裂纹扩展速率试验研究[J/OL]. 建筑结构学报: 1-12[2022-12-24].
ZONG Liang, GUO Shichao, LIAO Xiaowei, et al. Experimental investigation on fatigue crack growth rate of Q690D high strength steel[J/OL]. Journal of Building Structures: 1-12[2022-12-24].
[6] 邱晨, 邢佶慧, 张丽, 等. Q460高强钢材及T形对接接头超低周疲劳特性[J]. 振动与冲击, 2021, 40(16): 166-174.
QIU Chen, XING Jihui, ZHANG Li, et al. Ultra-low cycle fatigue properties of Q460 high strength T-shape butt weld joints[J]. Journal of Vibration and Shock, 2021, 40(16): 166-174.
[7] 胡宝琳, 周磊, 庄继勇, 等. 直角突变式钢吊车梁裂纹扩展及疲劳寿命研究[J]. 振动与冲击, 2022, 41(14): 135-144.
HU Baolin, ZHOU Lei , ZHUANG Jiyong, et al. Crack propagation and fatigue life of right angle mutation type steel crane runway girders[J]. Journal of Vibration and Shock, 2022, 41(14): 135-144.
[8] 郭宏超, 皇垚华, 刘云贺, 等. Q460D高强钢及其螺栓连接疲劳性能试验研究[J]. 建筑结构学报, 2018, 39(08): 165-172.
GUO Hongchao, HUANG Yaohua, LIU Yunhe, et al. Experimental study on fatigue property of Q460 high-strength steel and its bolted connections[J]. Journal of Building Structures, 2018, 39(08): 165-172.
[9] STEIMBREGER C, GUBELJAK N, VUHERER T, et al. Effect of welding processes on the fatigue behaviour of ultra-high strength steel butt-welded joints[J]. Engineering Fracture Mechanics, 2022, 275: 108845.
[10] 张春涛, 朱泓杰, 王汝恒. Q690高强钢疲劳损伤后力学性能试验研究 [J]. 建筑结构学报, 2021, 42(4): 117-184.
ZHANG Chuntao, ZHU Hongjie, WANG Ruheng. Experimental study on mechanical properties of Q690 high strength steel after fatigue damage [J]. Journal of Building Structures, 2021, 42(4): 117-184.
[11] LIN X M, Yam M C H, CHUNG K F, et al. Experimental and numerical study on net section resistance of high strength steel staggered bolted connections[J]. Engineering Structures, 2021, 247: 1928-1937.
[12] GB/T 2975-2018, 钢及钢产品力学性能试验取样位置及试样制备[S]. 北京: 中国标准出版社, 2018.
[13] GB/T228.1-2010, 金属材料拉伸试验:第1部分:室温试验方法[S]. 北京: 中国标准出版社, 2010.
[14] 童乐为, 牛立超, 任珍珍, 等. Q550D高强钢焊接节点疲劳强度试验研究[J].工程力学, 2021, 38(12); 214-222.
TONG Lewei ,NIU Lichao, REN Zhenzhen, et al. Experimental study on fatigue strength of welded joints of high strength steel Q550D[J]. Engineering Mechanics, 2021, 38(12): 214-222.
[15] GB/T 3075-2008, 金属材料疲劳试验轴向力控制方法[S]. 北京: 中国标准出版社, 2008.
[16] ANSI/AISC 360-16, Specification for Structural Steel Buildings[S]. Chicago: American Institute of Steel Construction, 2016.
[17] prEN 1993-1-8 Eurocode 3: Design of Steel Structures: Part 1.8: Design of Joints[S]. Brussels, Belgium: European Committee for Standardization( CEN), 2006.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}