汽车主动悬架次优控制策略等效性研究

鲁红伟1, 张志飞1, 徐中明1, 谭侃伦2, 郑晓勇2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 316-324.

PDF(4172 KB)
PDF(4172 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 316-324.
论文

汽车主动悬架次优控制策略等效性研究

  • 鲁红伟1, 张志飞1, 徐中明1, 谭侃伦2, 郑晓勇2
作者信息 +

Equivalence of sub-optimal control strategy for vehicle active suspension

  • LU Hongwei1,ZHANG Zhifei1,XU Zhongming1,TAN Kanlun2,ZHENG Xiaoyong2
Author information +
文章历史 +

摘要

相比于全状态反馈的悬架最优控制,非全状态反馈的次优控制在减少输入变量数的同时保持了相近的控制效果。对比了两种获得次优控制的方法,即最小范数法和双阻尼控制法,在保持与最优控制的等效性上的能力。通过综合考虑舒适性,悬架动挠度和轮胎动载荷,在三种不同类型最优控制(I型LQR控制、II型LQR控制和H∞控制)的合理参数范围内讨论次优控制策略的等效性,采用控制力相对差异来衡量次优控制对最优控制的等效程度。数值仿真结果表明,在合理控制参数范围内,双阻尼控制对LQR控制的等效程度更高,而最小优范数法获得的次优控制对H∞控制的等效程度更高。

Abstract

Compared with the optimal suspension control with full state feedback, the suboptimal control with non-full state feedback reduces the number of input variables while maintaining a similar control effect. This paper compares the ability of two methods to obtain suboptimal control, namely the minimum norm method and the dual damping control method, in maintaining equivalence with optimal control. By comprehensively considering comfort, suspension dynamic deflection and tire dynamic load, the reasonable parameter ranges of three different types of optimal control (I-type LQR control, II-type LQR control and H∞ control) are given, and the equivalent degree of the suboptimal controls to the optimal control is measured by the relative difference of control force. The numerical simulation results show that, within reasonable control parameters, the dual damping control is more equivalent to the LQR control, while the suboptimal control obtained by the least optimal norm method is more equivalent to the H∞ control.

关键词

汽车主动悬架 / 次优控制 / 最小范数法 / 双阻尼控制

Key words

Automotive active suspension / Suboptimal control / Minimum norm method / Dual damping control

引用本文

导出引用
鲁红伟1, 张志飞1, 徐中明1, 谭侃伦2, 郑晓勇2. 汽车主动悬架次优控制策略等效性研究[J]. 振动与冲击, 2023, 42(23): 316-324
LU Hongwei1,ZHANG Zhifei1,XU Zhongming1,TAN Kanlun2,ZHENG Xiaoyong2. Equivalence of sub-optimal control strategy for vehicle active suspension[J]. Journal of Vibration and Shock, 2023, 42(23): 316-324

参考文献

[1] Brezas P, Smith M C, Hoult W. A clipped-optimal control algorithm for semi-active vehicle suspensions: theory and experimental evaluation [J]. Automatica, 2015, 53: 188-94.
[2] Unger A, Schimmack F, Lohmann B, et al. Application of LQ-based semi-active suspension control in a vehicle [J]. Control Engineering Practice, 2013, 21(12): 1841-50.
[3] ElMadany M M, Al Bassam B A, Fayed A A. Preview control of slow-active suspension systems [J]. Journal of Vibration and Control, 2010, 17(2): 245-58.
[4] Xu Y, Xie Z, Zhao J, et al. Robust non-fragile finite frequency H∞ control for uncertain active suspension systems with time-delay using T-S fuzzy approach [J]. Journal of the Franklin Institute, 2021, 358(8): 4209-38.
[5] Kim K, Jeon D. Vibration suppression in an MR fluid damper suspension system [J]. Journal of Intelligent Material Systems and Structures, 1999, 10(10): 779-86.
[6] Dong X, Yu M, Liao C, et al. Comparative research on semi-active control strategies for magneto-rheological suspension [J]. Nonlinear Dynamics, 2010, 59: 433-53.
[7] Li W, Xie Z, Zhao J, et al. Static-output-feedback based robust fuzzy wheelbase preview control for uncertain active suspensions with time delay and finite frequency constraint [J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(3): 664-78.
[8] Zhao J, Wang X, Wong P K, et al. Multi-objective frequency domain-constrained static output feedback control for delayed active suspension systems with wheelbase preview information [J]. Nonlinear Dynamics, 2021, 103(2): 1757-74.
[9] 马松辉, 陈怀民, 王鹏. 静态输出反馈控制的一种数值解法 [J]. 信息与控制, 2010, 39(02): 218-22+27.
[10] Brezas P, Smith M C. Linear Quadratic Optimal and Risk-Sensitive Control for Vehicle Active Suspensions [J]. IEEE Transactions on Control Systems Technology, 2014, 22(2): 543-56.
[11] Zong L H, Gong X L, Guo C Y, et al. Inverse neuro-fuzzy MR damper model and its application in vibration control of vehicle suspension system [J]. Vehicle System Dynamics, 2012, 50(7): 1025-41.
[12] Choi S B, Li W, Yu M, et al. State of the art of control schemes for smart systems featuring magneto-rheological materials [J]. Smart Materials and Structures, 2016, 25(4): 043001.
[13] Levine W, Athans M. On the determination of the optimal constant output feedback gains for linear multivariable systems [J]. IEEE Transactions on Automatic Control, 1970, 15(1): 44-8.
[14] Kosut R. Suboptimal control of linear time-invariant systems subject to control structure constraints [J]. IEEE Transactions on Automatic Control, 1970, 15(5): 557-63.
[15] 张玉春, 王良曦, 丛华. 汽车主动悬挂系统的次优控制及仿真 [J]. 系统仿真学报, 2003, (08): 1095-7.
[16] 李金辉, 张柯柯, 徐立友. 重型汽车主动悬架次优控制策略设计与分析 [J]. 振动与冲击, 2020, 39(13): 141-7.
[17] 鲁红伟. 基于磁流变阻尼器逆模型的汽车半主动悬架控制 [D]. 重庆; 重庆大学, 2022.
[18] Venhovens P J T. The development and implementation of adaptive semi-active suspension control [J]. Vehicle System Dynamics, 1994, 23(3): 211-35.
[19] Besinger F H, Cebon D, Cole D J. Force control of a semi-active damper [J]. Vehicle System Dynamics, 1995, 24(9): 695-723.
[20] Ahmadian M, Pare C A. A quarter-car experimental analysis of alternative semiactive control methods [J]. Journal of Intelligent Material Systems and Structures, 2000, 11(8): 604-12.
[21] Ahmadian M, Vahdati N. Transient dynamics of semiactive suspensions with hybrid control [J]. Journal of Intelligent Material Systems and Structures, 2006, 17(2): 145-53.
[22] Ahmadian M, Song X, Southward S C. No-jerk skyhook control methods for semiactive suspensions [J]. Journal of Vibration and Acoustics, 2004, 126(4): 580-4.
[23] Savaresi S M, Spelta C. Mixed sky-hook and ADD: approaching the filtering limits of a semi-active suspension [J]. Journal of Dynamic Systems, Measurement, and Control, 2006, 129(4): 382-92.
[24] Hrovat D. Survey of advanced suspension developments and related optimal control applications [J]. Automatica, 1997, 33(10): 1781-817.
[25] Elbeheiry E M, Karnopp D C. Optimal control of vehicle random vibration with constrained suspension deflection [J]. Journal of Sound and Vibration, 1996, 189(5): 547-64.
[26] Bai X L, Lei J. Internal model-based optimal vibration control for linear vehicle suspension systems with actuator delay [J]. Ferroelectrics, 2019, 549(1): 195-203.
[27] 兰波, 喻凡, 刘娇蛟. 主动悬架LQG控制器设计 [J]. 系统仿真学报, 2003, (01): 138-40+53.
[28] 寇发荣, 高亚威, 景强强等. 基于路面等级自适应的主动悬架LQG控制 [J]. 振动与冲击, 2020, 39(23): 30-7.

PDF(4172 KB)

Accesses

Citation

Detail

段落导航
相关文章

/