管束结构流弹失稳的数值预测方法研究

冯志鹏,蔡逢春,臧峰刚,齐欢欢,黄旋,刘帅

振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 49-54.

PDF(1529 KB)
PDF(1529 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 49-54.
论文

管束结构流弹失稳的数值预测方法研究

  • 冯志鹏,蔡逢春,臧峰刚,齐欢欢,黄旋,刘帅
作者信息 +

Numerical prediction method for fluid-elastic instability of tube bundle structure

  • FENG Zhipeng,CAI Fengchun,ZANG Fenggang,QI Huanhuan,HUANG Xuan,LIU Shuai
Author information +
文章历史 +

摘要

流弹失稳(流体弹性不稳定性)会在短时间内导致管束破坏,是蒸汽发生器设计必须考虑的流致振动机理。本文通过理论建模和CFD(计算流体力学)计算相结合的方式,发展流弹失稳行为的数值预测方法。首先,分别基于准稳态理论、非稳态理论和一维非定常流动理论,推导出目前研究最广泛的三种流弹失稳理论模型的控制方程和关键参数的数学模型;然后,发展理论模型中众多参数的辨识方法,通过仿真数据驱动的方式,获得全套流体力相关参数;最后,以华龙一号蒸汽发生器的传热管为对象,建立管束结构流弹失稳的数值预测方法,并用现有试验数据进行验证。结果表明,通过CFD计算辨识的流体力相关参数与已有实验结果吻合,CFD计算与理论模型耦合的数值预测方法,具备一定的实用性;完成了数值预测方法的工程应用,预测结果与验证性试验的结论一致;本文的数值预测方法结合了理论建模和CFD计算的优点,同时避免了对海量计算资源的需求、降低了对试验数据的依赖,有利于在工程中推广应用。

Abstract

Fluidelastic instability (FEI) is the most serious, which could lead to tube bundle damage in short time. The numerical prediction approach is developed through the combination of theoretical modeling and CFD (Computational Fluid Dynamics) calculation. Firstly, the control equations and mathematical models of key parameters of the three most widely studied FEI theoretical models are derived based on quasi-steady theory, unsteady theory, and one-dimensional unsteady flow theory; then, the identification methods of many parameters in the theoretical model are developed. Through the simulation data-driven method, a full set of flow force related parameters are obtained. Finally, the numerical prediction method of FEI for tube bundle is established for steam generator of HPR1000. The predictions are verified with the existing test data. The results show that the numerical prediction method coupled with CFD calculation and theoretical model has certain practicability; the numerical prediction has been applied successfully in engineering and the prediction is consistent with the conclusion of the confirmatory test. The proposed method combines the advantages of theoretical modeling and CFD calculation, avoids the demand for massive computing resources, reduces the dependence on test data, and is conducive to application in engineering.

关键词

流体弹性不稳定 / 计算流体力学 / 管束 / 流致振动

Key words

fluidelastic instability / computational fluid dynamics / tube bundle / flow-induced vibration

引用本文

导出引用
冯志鹏,蔡逢春,臧峰刚,齐欢欢,黄旋,刘帅. 管束结构流弹失稳的数值预测方法研究[J]. 振动与冲击, 2023, 42(23): 49-54
FENG Zhipeng,CAI Fengchun,ZANG Fenggang,QI Huanhuan,HUANG Xuan,LIU Shuai. Numerical prediction method for fluid-elastic instability of tube bundle structure[J]. Journal of Vibration and Shock, 2023, 42(23): 49-54

参考文献

[1] 姜乃斌, 冯志鹏, 臧峰刚, 等. 核工程中的流致振动理论及应用[M]. 上海: 上海交通大学出版社, 2018.
Jiang Naibin, Feng Zhipeng, Zang Fenggang, et al. Theory and Application of Flow-induced Vibration in Nuclear Engineering [M]. Shanghai: Shanghai Jiaotong University Press, 2018.
[2] 刘丽艳, 王一鹏, 朱勇, 等. 蒸汽发生器U形管湍流抖振及微动磨损研究[J].振动与冲击,2021,40(08): 35-40.
LIU Liyan,WANG Yipeng,ZHU Yong, et al. A study on turbulent buffeting and fretting wear of U-tube of a steam generator[J]. Journal of vibration and shock, 2021, 40 (08): 35-40.
[3] Meskell C, Fitzpatrick J. Investigation of the Nonlinear Behavior of Damping Controlled Fluidelastic Instability in a Normal Triangular Tube Array[J]. Journal of Fluids and Structure, 2003, 18(5): 573-593.
[4] Marwan Hassan, Andrew Gerber, Hossin Omar. Numerical Estimation of Fluidelastic Instability in Tube Arrays [J]. Journal of Pressure Vessel Technology, 2010, 132: 041307-1-11.
[5] 赵燮霖, 冯志鹏, 蔡逢春, 等. CFD-半解析模型混合的管束结构流弹失稳预测方法[J]. 应用数学和力学, 2021, 42(3): 248-255.
Zhao Xielin, Feng Zhipeng, CaiFengchun, et al. A Hybrid CFD and Semi-Analytical Approach to Predict Cross-Flow-Induced Fluidelastic Instability of Tube Arrays[J]. Applied Mathematics and Mechanics, 2021, 42(3): 248-255.
[6] 宋乐琨, 赵燮霖, 周进雄, 等. CFD与准静态理论混合的管束结构流弹失稳预测方法[J]. 核动力工程, 2021, 42(3): 89⁃94.
Song Lekun, Zhao Xielin, Zhou Jinxiong, et al. A Hybrid CFD and Quasi-Static Theory Method for Fluidelastic Instability Prediction of a Tube bundle[J]. Nuclear Power Engineering, 2021, 42(3): 89⁃94.
[7] Chen S. S. Instability Mechanisms and Stability Criteria of a Group of Circular Cylinders Subjected to Cross-Flow. Part 2: Numerical Results and Discussions[J]. Journal of Vibration & Acoustics, 1983, 105(2):51-58.
[8] 冯志鹏, 臧峰刚, 齐欢欢, 等. 管束结构的阻尼控制型流弹失稳特性研究[J].原子能科学技术(已录用).
Feng Zhipeng, Zang Fenggang, Qi Huanhuan, et al. Study on Damping-controlled Fluidelastic Instability in Tube Bundle[J]. Atomic Energy Science and Technology(Accepted).
[9] Mahon J, Meskell C. Surface pressure survey in a parallel triangular tube array[J]. Journal of Fluids and Structures, 2012, 34: 123-137.
[10] Tanaka H, Takahara S. Fluidelastic vibration of tube array in cross flow[J]. Journal of Sound and Vibration, 1981, 77(1): 19-37.
[11] Chen S S, Srikantiah G S. Motion-Dependent Fluid Force Coefficients for Tube Arrays in Cross flow[J]. Journal of Pressure Vessel Technology, 2001, 123, 429-436.
[12] Khalifa A. Fluidelastic Instability in Heat Exchanger Tube Arrays[D]. Hamilton: McMaster University, 2011.
[13] Weaver D S, Fitzpatrick J A. A review of cross-flow induced vibrations in heat exchanger tube arrays[J]. Journal of Fluids and Structure, 1988, 2: 73-93.

PDF(1529 KB)

Accesses

Citation

Detail

段落导航
相关文章

/