基于最不利塔顶位移相图法的风电塔筒动力屈曲研究

李万润1,2,3,范科友1,杜永峰1,2,3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 8-20.

PDF(7055 KB)
PDF(7055 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (23) : 8-20.
论文

基于最不利塔顶位移相图法的风电塔筒动力屈曲研究

  • 李万润1,2,3,范科友1,杜永峰1,2,3
作者信息 +

Dynamic buckling of wind turbine tower based on most unfavorable tower top displacement phase diagram method

  • LI Wanrun1,2,3,FAN Keyou1,DU Yongfeng1,2,3
Author information +
文章历史 +

摘要

风电结构作为一种高耸的薄壁结构,易发生动力屈曲破坏,而我国的风电结构大多都不可避免地建于地震易发区。因此,以西北地区某2.5 MW风力发电机为原型,对风-震耦合作用下风电塔筒的动力屈曲行为开展研究。首先,基于谐波叠加法、叶素动量理论及尾流模型计算运转工况下风电结构所受风荷载。其次,建立风电结构的有限元模型,探讨输入角度对于风电塔筒在风、地震及风-震耦合作用下的动力响应的影响。最后,结合增量动力分析,提出基于“最不利塔顶位移相图法”的方法来研究风电塔筒在风-震耦合作用下的动力屈曲行为,并探讨其主导因素。研究结果表明:风-震耦合作用会导致风电塔筒在强度方面的额外需求;在确定门洞的朝向问题上应考虑风-震耦合作用的因素;风-震耦合作用下风电塔筒呈现局部的塑性动力屈曲现象,而基于“最不利塔顶位移相图法”可以很好的判别并分析风电塔筒的动力屈曲。

Abstract

Most of the wind turbine towers in my country are inevitably built in earthquake-prone areas, which are prone to dynamic buckling under the wind-earthquake coupling because they are thin-walled structures. Therefore, a 2.5 MW wind turbine in Northwest China was taken as a prototype to study the dynamic buckling of wind turbine tower under the coupling effect of wind and earthquake. First, the harmonic superposition method, the blade element momentum theory and the wake model were used to calculate the wind load on the wind turbine tower under operating conditions. Secondly, the finite element model of the wind turbine tower was established, and the influence of different loading angles on the dynamic response of the wind turbine tower under the wind, earthquake and wind-earthquake coupling was discussed. Finally, combined with the incremental dynamic analysis, a method based on the phase diagram method of the most unfavorable tower top displacement was proposed to study the dynamic buckling of the wind turbine tower under the wind-earthquake coupling, and its dominant factors were discussed. The results show that the effect of wind-earthquake coupling will lead to additional demands on the strength of the wind turbine tower. In determining the orientation of the door opening, the factors of wind-earthquake coupling should be considered. The wind turbine tower exhibits local plastic dynamic buckling under the wind-earthquake coupling, and the "phase diagram method of the most unfavorable tower top displacement" can accurately identify and analyze the dynamic buckling of the wind turbine tower.

关键词

风电塔筒 / 动力屈曲 / 风-震耦合 / 增量动力分析 / 相图法

Key words

wind turbine tower / dynamic buckling / wind-earthquake coupling / incremental dynamic analysis / phase diagram method

引用本文

导出引用
李万润1,2,3,范科友1,杜永峰1,2,3. 基于最不利塔顶位移相图法的风电塔筒动力屈曲研究[J]. 振动与冲击, 2023, 42(23): 8-20
LI Wanrun1,2,3,FAN Keyou1,DU Yongfeng1,2,3. Dynamic buckling of wind turbine tower based on most unfavorable tower top displacement phase diagram method[J]. Journal of Vibration and Shock, 2023, 42(23): 8-20

参考文献

[1] Council G W E. GWEC|global wind report 2022[R]. Global Wind Energy Council: Brussels, Belgium, 2022.
[2] International Energy Agency. Renewables 2021[R]. IEA, Paris, 2021.
[3] Chou J S, Ou Y C, Lin K Y. Collapse mechanism and risk management of wind turbine tower in strong wind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 193: 103962.
[4] 刘贻雄. 大型风力机塔筒结构动力学与稳定性分析[D]. 兰州理工大学, 2012.
Liu Yixiong. Structure dynamic analysis and buckling stability analysis on large wind turbine tower[D]. Lanzhou University of Technology, 2012. (in Chinese)
[5] 黄杰. 考虑竖向及脉冲效应的近断层地震动作用下风力发电结构动力响应及破坏模式分析[D]. 兰州理工大学, 2020.
Huang Jie. Seismic performance and failure mode of on-shore wind turbine structure under near-fault ground motions considering vertical and pulse effect[D]. Lanzhou University of Technology, 2020. (in Chinese)
[6] IEC 61400-1 Wind Turbines-Part 1: Design Requirements[S]. Geneva: International Electrotechnical Commission, 2005.
[7] GL (2005) Guidelines for certification of offshore wind turbines[S]. Hamburg: Germanischer Lloyd, 2005.
[8] Murtagh P J, Basu B, Broderic B M. Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading[J]. Engineering Structures, 2005, 27(8): 1209-1219.
[9] 曾庆川, 刘浩, LIM Che Wah, 等. 基于改进叶素动量理论的水平轴风电机组气动性能计算[J]. 中国电机工程学报, 2011, 31(23): 129-134.
Zeng Qingchuan, Liu Hao, LIM Che Wah, et al. Computation of Aerodynamic Performance for Horizontal Axis Wind Turbine Based on Improved Blade Element Momentum Theory[J]. Proceedings of the  CSEE, 2011, 31(23): 129-134.(in Chinese)
[10] 柯世堂, 王同光, 赵林, 等. 风力机风振背景、共振响应特性及耦合项分析[J]. 中国电机工程学报, 2013, 33(26): 101-107+1.
Ke Shitang, Wang Tongguang, Zhao Lin, et al.B ackground,resonant components and coupled effect of wind-induced responses on wind turbine systems [J]. Proceedings of the CSEE, 2013, 33(26): 101-107+1.(in Chinese)
[11] 柯世堂, 王同光, 胡丰, 等. 基于塔架-叶片耦合模型风力机全机风振疲劳分析[J]. 工程力学, 2015, 32(08): 36-41.
Ke Shitang, Wang Tongguang, Hu Feng, et al. Wind-induced fatigue analysis of wind turbine system based on tower-blade coupled model[J]. Engineering Mechanics, 2015, 32(08): 36-41.(in Chinese)
[12] 柯世堂, 余玮, 王同光. 基于大涡模拟考虑叶片停机位置大型风力机风振响应分析[J]. 振动与冲击, 2017, 36(07): 92-98+163.
Ke Shitang, Yu Wei, Wang Tongguang. Wind-included vibration response analysis for a large wind turbine blade-tower system based on large eddy simulation[J]. Journal of Vibration and Shock,  2017, 36(07): 92-98+163.(in Chinese)
[13] 潘方树, 王法武, 柯世堂,等. 考虑缺陷的大型风力机塔筒屈曲分析与稳定性设计[J]. 太阳能学报, 2017(10):2659-2664.
Pan Fangshu, Wa Fawu, Ke Shitang, et al. Buckling analysis and stability design of wind turbine tower with geometic imperfections[J]. Acta Energiae Solaris Sinica, 2017(10):2659-2664.(in Chinese)
[14] 黄国庆, 赵晨旭, 周绪红,等. 改进的台风下单桩海上风机易损性分析方法及应用[J]. 振动工程学报, 2022(002):035.
Huang Guoqing, Zhao Chenxu, Zhou Xuhong, et al. Improved wind-induced fragility assessment method of offshore wind turbines under typhoon and its application[J]. Journal of Vibration Engineering, 2022(002):035.(in Chinese)
[15] Li W, Huang J, Du Y. Dynamic Response Analysis of Wind Turbines Under Long-Period Ground Motions[M]//Data Mining in Structural Dynamic Analysis. Springer, Singapore, 2019: 65-84.
[16] Xu Y, Ren Q, Zhang H, et al. Collapse analysis of a wind turbine tower with initial-imperfection subjected to near-field ground motions[C]//Structures. Elsevier, 2021, 29: 373-382.
[17] 戴靠山, 赵志, 孟家瑶. 风电塔在地震和风荷载下的失效概率评估[J]. 工程科学与技术, 2021, 53(02): 38-44.
Dai Kaoshan, Zhao Zhi, Meng Jiayao. Failure probability evaluations of a wind turbine under earthquakes and wind loads[J]. Advanced Engineering Sciences, 2021, 53(02): 38-44.(in Chinese)
[18] 席仁强,杜修力,许成顺,等. 地震动方向对海上风力发电机动力响应的影响[J]. 振动与冲击, 2021, 40(5): 193-201.
Xi Renqiang, Du Xiuli, Xu Chengshun, et al. Effects of ground motion input direction on dynamic response of offshore wind turbine[J]. Journal of Vibration and Shock, 2021, 40(5): 193-201. (in Chinese)
[19] Fan J, Li Q, Zhang Y. Collapse analysis of wind turbine tower under the coupled effects of wind and near-field earthquake[J]. Wind Energy, 2019, 22(3): 407-419.
[20] 李万润, 范科友, 杜永峰. 考虑叶片旋转效应的风力发电塔架结构风-震耦合响应分析[J]. 工程力学.  doi: 10.6052/j.issn.1000-4750.2021.10.0817
Li Wanrun, Fan Keyou, Du Yongfeng. Response analysis of wind turbine structure considering blade rotation effect under wind-earthquake coupling[J]. Engineering Mechanics. doi: 10.6052/j.issn.1000-4750.2021.10.0817 (in Chinese)
[21] Yan Y, Li C, Li Z. Buckling analysis of a 10 MW offshore wind turbine subjected to wind-wave-earthquake loadings[J]. Ocean Engineering, 2021, 236: 109452.
[22] Shinozuka M, Deodatis G. Simulation of stochastic process by spectral representation[J]. Applied Mechanics Review, 1991, 44(4): 191–204.
[23] Shinozuka M, Jan C M. Digital simulation of random process and its application[J]. Journal of Sound and Vibration, 1972, 25(1): 111-128.
[24] Yang J N. Simulation of random envelope process[J]. Journal of Sound and Vibration, 1972,21(1): 73-85.
[25] Sadowski A J. On the advantages of hybrid beam-shell structural finite element models for the efficient analysis of metal wind turbine support towers[J]. Finite Elements in Analysis and Design, 2019, 162: 19-33.
[26] Sadowski A J, Camara A, Málaga-Chuquitaype C, et al. Seismic analysis of a tall metal wind turbine support tower with realistic geometric imperfections[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(2): 201-219.

PDF(7055 KB)

Accesses

Citation

Detail

段落导航
相关文章

/