小半径曲线段钢轨打磨方案比选及动力特性研究

张斌1,2,汪龙洋1,2,杨宗超3,孙奇1,2,万文超4,汤金伟5

振动与冲击 ›› 2023, Vol. 42 ›› Issue (24) : 169-174.

PDF(3007 KB)
PDF(3007 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (24) : 169-174.
论文

小半径曲线段钢轨打磨方案比选及动力特性研究

  • 张斌1,2,汪龙洋1,2,杨宗超3,孙奇1,2,万文超4,汤金伟5
作者信息 +

A study on comparison of rail grinding schemes and dynamic characteristics of small radius curve sections

  • ZHANG Bin1,2,WANG Longyang1,2,YANG Zongchao3,SUN Qi1,2,WAN Wenchao4,TANG Jinwei5
Author information +
文章历史 +

摘要

小半径曲线段钢轨廓形质量对轮轨接触关系及钢轨使用寿命有着关键影响,为探究个性化打磨对小半径曲线段磨耗廓形的轮轨接触改善及钢轨使用寿命延长效果,选取沪昆普速铁路小半径曲线段两组磨耗钢轨进行打磨方案研究。基于现场实测数据及病害分析,与消除表面病害为目的修复性打磨方案作比较,对钢轨进行个性化打磨廓形设计。跟踪观测钢轨表面状态,结合GQI(grinding quality index)指数及轮轨接触分析,建立车辆-轨道动力学模型计算打磨方案对轮轨动力特性的影响,综合评价打磨效果。结果表明:修复性打磨仅对钢轨表面病害进行处理,并未实际改善轮轨关系,廓形保持能力不佳,后续动力学指标评价也无明显改善;相比之下,个性化打磨廓形保持能力更佳,GQI指数明显提升,轮轨关系改善显著,提高了车辆曲线通过能力;动力学方面,个性化打磨方案的轮轨横、纵向蠕滑率和磨耗指数分别降低60.45%、33.95%和24.13%,有效缓解了轮轨间的磨耗,延长了钢轨使用寿命与打磨周期;车体横向、垂向加速度和脱轨系数分别降低19.69%、30.74%和26.11%,列车运行平稳性得到良好改善,提高了列车运行安全性。由此可见,个性化打磨方案在清除小半径曲线段磨耗钢轨病害的基础上,延长了钢轨服役周期,同时提高了列车运行品质。

Abstract

The quality of rail profile in the small radius curve section has a key influence on the wheel-rail contact relationship and the rail service life. In order to explore the effect of the personalized grinding scheme on the wheel-rail contact improvement and the rail service life extension of the wear profile in the small radius curve section, two groups of wear rails in the small radius curve section of Shanghai-Kunming ordinary speed railway were selected for grinding scheme research. Based on the field measured data and disease analysis, compared with the reparative grinding scheme for the purpose of eliminating surface diseases, the personalized grinding profile design of the rail is designed. The rail surface state is tracked and observed. Combined with GQI index and wheel-rail contact analysis, the vehicle-track dynamic model is established to calculate the influence of grinding scheme on wheel-rail dynamic characteristics, and the grinding effect is comprehensively evaluated. The results show that the reparative grinding only deals with the rail surface diseases, and does not actually improve the wheel-rail relationship. The profile retention ability is not good, and the subsequent dynamic index evaluation is not significantly improved. In contrast, the personalized grinding profile retention ability is better, the GQI index is significantly improved, the wheel-rail relationship is significantly improved, and the vehicle curve passing ability is improved. In terms of dynamics, the lateral and longitudinal creep rates and wear index of the personalized grinding scheme are reduced by 60.45%, 33.95% and 24.13% respectively, which effectively alleviates the wheel-rail wear and prolongs the rail service life and grinding cycle of the rail. The lateral and vertical acceleration and derailment coefficient of the car body are reduced by 19.69%, 30.74% and 26.11%, respectively. The running stability of the train is improved and the safety of the train operation is improved. It can be seen that the personalized grinding scheme prolongs the rail service cycle and improves the train operation quality on the basis of removing the wear rail disease in the small radius curve section.

关键词

小半径曲线 / 钢轨打磨 / 轮轨接触特性 / 车辆轨道动力学 / 钢轨磨耗

Key words

Small radius curve / Rail grinding / Wheel-rail contact characteristics / Vehicle track dynamics / Rail wear

引用本文

导出引用
张斌1,2,汪龙洋1,2,杨宗超3,孙奇1,2,万文超4,汤金伟5. 小半径曲线段钢轨打磨方案比选及动力特性研究[J]. 振动与冲击, 2023, 42(24): 169-174
ZHANG Bin1,2,WANG Longyang1,2,YANG Zongchao3,SUN Qi1,2,WAN Wenchao4,TANG Jinwei5. A study on comparison of rail grinding schemes and dynamic characteristics of small radius curve sections[J]. Journal of Vibration and Shock, 2023, 42(24): 169-174

参考文献

[1] 刘月明,李建勇,蔡永林,等. 钢轨打磨技术现状和发展趋势[J]. 中国铁道科学,2014,35(04):29-37.
LIU Yueming,LI Jianyong,CAI Yonglin,et al. Current situation and development trend of rail grinding technology[J]. China Railway Science,2014,35(04):29-37.
[2] 许自强,董孝卿,彭中彦,等. 基于轮轨匹配的小曲线轮缘异常磨耗机理与控制措施[J]. 振动与冲击,2022,41(18):127-133.
XU Ziqiang,DONG Xiaoqing,PENG Zhongyan,et al. Abnormal wear mechanism and control measures of small curve rim based on wheel-rail matching[J]. Vibration and Impact,2022,41(18):127-133.
[3] 林凤涛,庞华飞,邓卓鑫,等. 曲线区钢轨双打磨廓形设计方法[J]. 铁道科学与工程学报,2022,19(01):87-99.
LIN Fengtao,PANG Huafei,DENG Zhuoxin,et al. Design method of rail double grinding profile in curve area[J]. Chinese Journal of Railway Science and Engineering,2022,19(01):87-99.
[4] FAN W G,HOU G W,WANG W X,et al. Design and dynamic analysis of a new rail grinding device using closed abrasive belt[J]. International Journal of Simulation Modeling,2019,18(3):531-542.
[5] LIU Y M,YANG T Y,HE Z,et al. Analytical modeling of grinding process in rail profile correction considering grinding pattern[J]. Archives of Civil and Mechanical Engineering,2018,18(2):669-678.
[6] ZENG W,YANG Y,QIU W S,et al. Optimization of the target profile for asymmetrical rail grinding in sharp-radius curves for high-speed railways[J]. Advances in Mechanical Engineering,2017,9(2):265-273.
[7] ZHAO C Y,WANG P,YI Q. Internal noise reduction in railway vehicles by means of rail grinding and rail dampers[J]. Noise Control Engineering Journal,2017,65(1):1-13.
[8] MICHAEL S. Rolling contact fatigue in relation to rail grinding[J]. Wear,2016,356-357:110-121.
[9] 李立,彭敬康,崔大宾,等. 小半径曲线钢轨非对称打磨廓形设计方法[J]. 交通运输工程学报,2022,22(02):99-110.
LI Li,PENG Jingkang,CUI Dabin,et al. Design method of asymmetric grinding profile for small radius curved rail[J]. Journal of Traffic and Transportation Engineering,2022,22(02):99-110.
[10] 吴磊,康彦兵,董勇,等. 考虑打磨量的重载钢轨打磨廓形优化设计[J]. 西南交通大学学报,2022,57(04):805-812.
WU Lei,KANG Yanbing,DONG Yong,et al. Optimization design of grinding Profile of heavy duty rail considering grinding amount[J]. Journal of Southwest Jiaotong University,2022,57(04):805-812.
[11] 杨逸航,肖乾. 不同形式的道岔钢轨打磨对高速列车动力学性能影响[J]. 北京交通大学学报,2020,44(03):129-135+141.
YANG Yihang,XIAO Qian. Effect of different forms of rail grinding on dynamic performance of high-speed train[J]. Beijing Jiaotong University,2020,44(03):129-135+141.
[12] 郭战伟. 基于轮轨蠕滑最小化的钢轨打磨研究[J]. 中国铁道科学,2011,32(06):9-15.
GUO Zhanwei. Research on rail grinding based on Wheel and rail creep minimization[J]. China Railway Science,2011,32(06):9-15.
[13] 王军平,单连琨,丁军君,等. 个性化钢轨廓形打磨方法分析[J]. 铁道建筑,2015,(11):131-133.
WANG Junping,SHAN Liankun,DING Junjun,et al. Analysis of personalized rail profile grinding method[J]. Railway Construction,2015,(11):131-133.
[14] 贾晋中,司道林. 朔黄铁路小半径曲线轨道钢轨打磨目标型面研究[J]. 中国铁道科学,2014,35(04):15-21.
JIA Jinzhong,SI Daolin. Research on grinding target profile of small radius curved track of shuohuang railway[J]. China Railway Science,2014,35(04):15-21.
[15] 吴宵,李应平,杨怀志,等. 高速铁路钢轨廓形磨耗发展规律及打磨周期研究[J]. 铁道建筑,2021,61(03):120-123.
WU Xiao,LI Yingping,YANG Huaizhi,et al. Research on development law and grinding period of rail profile wear of high-speed railway[J]. Railway Construction,2021,61(03):120-123.

PDF(3007 KB)

Accesses

Citation

Detail

段落导航
相关文章

/