针对电力系统中的随机扰动,在高斯型随机激励的基础上,增加泊松跳跃激励,进而建立更加精准的电力系统非线性随机模型,并利用带跳随机微分方程和非线性相关理论证明了多机电力系统在高斯与泊松混合激励下的均值、均方稳定性。给出了均值、均方的界与跳跃激励强度和随机激励强度及系统参数之间的关系,即在跳跃小激励强度与随机小激励强度下系统具有均值稳定与均方稳定,随着激励强度的增加,系统均值与均方的上界也相应增加,系统逐渐失稳。最后,对4机11节点系统,利用Heun数值算法进行模拟计算,对相同随机激励强度下不同的跳跃激励强度与相同跳跃激励强度下不同随机激励强度多机电力系统的功角响应轨迹进行分析,通过仿真结果与系统均值、均方的界来验证此结论的正确性。
Abstract
Aimed at stochastic disturbance in electrical power system, a more accurate nonlinear stochastic model of power system was established by adding Poisson jump excitation to Gaussian random excitation. Using stochastic differential equations with jumps and nonlinear correlation theory, the mean and mean square stability of multi-generator power systems under Gaussian and Poisson mixed excitations was proved, and the relationships between mean, mean square bounds and jump excitation intensity, random excitation intensity and system parameters were obtained. It was shown that the system has mean stability and mean square stability under jump small excitation intensity and random small excitation intensity, as the excitation intensity increases, the upper bound of the mean and mean square of the system increases accordingly, and the system gradually becomes unstable. Finally, using Heun numerical algorithm to simulate the stability of 4 generator 11 bus system, the power angle response trajectories of multi- machine power systems with different jump excitation intensities under the same random excitation intensity and different random excitation intensities under the same jump excitation intensity were analyzed, and the correctness of this conclusion was verified by the simulation results and the system mean and mean square bounds.
关键词
随机动力学 /
随机激励 /
跳跃激励 /
多机电力系统
{{custom_keyword}} /
Key words
stochastic dynamics /
random excitation /
jump excitation /
multi-machine power system
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MARCO C D, BERGEN A R. A security measure for random load disturbances in nonlincar power system models[J]. IEEE Trans on Circuits and Systems, 1987, 34(12): 1546-1557.
[2] 龙军, 莫群芳, 曾建. 基于随机规划的含风电场的电力系统节能优化调度策略[J]. 电网技术, 2011, 35(9): 133-138.
LONG Jun, MO Qunfang, ZENG Jian. A stochastic programming based short-Term optimization scheduling strategy considering energy conservation for power system containing wind farms[J]. Power System Technology, 2011, 35(9): 133-138.
[3] 王定胜, 张宏立, 王聪, 等. 基于浸入与不变原理的电力系统混沌振荡分析与控制[J]. 振动与冲击, 2022, 41(4): 142-149.
WANG Dingsheng, ZHANG Hongli, WANG Cong, et al. Analysis and control of power system chaotic oscillation based on the immersion and invariance principle[J]. Journal of Vibration and Shock, 2022, 41(4): 142-149.
[4] 李洪宇, 鞠平, 陈新琪, 等. 多机电力系统的拟哈密顿系统随机平均法[J]. 中国科学: 技术科学, 2015, 45(7): 766-772.
LI Hongyu, JU Ping, CHEN Xinqi, et al. Stochastic averaging method for quasi Hamiltonian system of multi-machine power systems[J]. Scientia Sinica(Technologica), 2015, 45(7): 766-772.
[5] 李洪宇, 鞠平, 余一平, 黄晓明, 等. 随机激励下系统频率动态安全性量化评估及半解析分析[J]. 中国电机工程学报, 2017, 37(7): 1955-1963.
LI Hongyu, JU Ping, YU Yiping, et al. Quantitative Evaluation and Semi-analytical Analysis of System Frequency Dynamic Safety under Stochastic Excitation [J]. Proceedings of the CSEE, 2017, 37(7): 1955-1963.
[6] 刘咏飞, 鞠平, 薛禹胜, 等. 随机激励下电力系统特性的计算分析[J].电力系统自动化, 2014, 38(9): 137-142.
LIU Yongfei, JU Ping, XUE Yusheng, et al. Computational analysis of power system characteristics under stochastic excitation [J]. Automation of electric power systems, 2014, 38(9): 137-142.
[7] ZHAO Y D, JUN H Z, DAVID J H. Numerical simulation for stochastic transient stability assessment [J]. IEEE Transactions on Power Systems, 2012, 27 (4): 1741-1749.
[8] 许纹碧, 王杰. 非线性电力系统随机小干扰稳定性分析[J]. 电网技术, 2014, 38(10): 2735-2740.
XU Wenbi, WANG Jie. Stability analysis of stochastic small disturbance in nonlinear power system.[J]. Power System Technology, 2014, 38(10): 2735-2740.
[9] LI L J, CHEN Y D, LIU H L. et al. Linearization threshold condition and stability analysis of a stochastic dynamic model of one-machine infinite-bus (OMIB) power systems[J]. Protection and Control of Modern Power Systems, 2021, 6(19): 1556-1564.
[10] 黄通, 王杰. 基于改进EEAC法的随机复杂多机系统的暂态稳定性分析[J].电网技术, 2017, 41(4): 1174-1182.
HUANG Tong, WANG Jie. Transient Stability Analysis of Stochastic Complex Multi-machine System Based on Improved EEAC Method [J]. Power grid technology, 2017, 41(4): 1174-1182.
[11] 张振, 刘艳红. 基于特征值的单机无穷大电力系统随机稳定性分析[J]. 郑州大学学报(工学版), 2018, 39(4): 58-63.
ZHANG Zhen, LIU Yanhong. Stochastic stability analysis of single-machine infinite power system based on eigenvalue [J]. Journal of zhengzhou university (engineering science), 2018, 39(4): 58-63.
[12] 陈永东. 高斯和泊松激励影响的单机无穷大电力系统功角稳定性[D]. 湘潭: 湘潭大学, 2021.
[13] 刘婧瑞, 陈林聪, 赵珧冰. 泊松白噪声激励下斜拉索的面内随机振动[J]. 振动与冲击, 2020, 39(15): 230-236.
LIU Jingrui, CHEN Lincong, ZHAO Yaobing. In-plane random vibration of stay cable system under Poisson white noise excitation[J]. Journal of Vibration and Shock, 2020, 39(15): 230-236.
[14] 鞠平,刘咏飞,薛禹胜,等. 电力系统随机动力学研究展望[J]. 电力系统自动化,2017,41(1):1-8.
JU P, LIU Y F, XUE Y S, et al. Prospect of stochastic dynamics of power system[J]. Power system automation, 2017, 41(1): 1-8.
[15] 卢强, 孙元章. 电力系统非线性控制[M]. 北京: 科学出版社, 1993: 142-175.
[16] LIU W Y, ZHU W Q. Stochastic stability of quasi-integrable and resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises[J]. International Journal of Non-Linear Mechanics. 2014, 67(1): 52-62.
[17] 秦子璇, 卢占会, 魏军强. 考虑高斯激励的多机电力系统的p阶随机稳定性分析[J]. 华北电力大学学报(自然科学版), 2020, 47(2): 81-88.
QIN Zixuan, LU Zhanhui, WEI Junqiang. P-order stochastic stability analysis of multi-machine power system with gaussian excitation [J]. Journal of north China electric power university (natural science edition), 2020, 47(2): 81-88
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}