沉管隧道基础灌砂过程监测及填充状态评价

徐子瑶,车爱兰,周晗旭,袁刚烈,韩兆龙

振动与冲击 ›› 2023, Vol. 42 ›› Issue (24) : 204-211.

PDF(2174 KB)
PDF(2174 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (24) : 204-211.
论文

沉管隧道基础灌砂过程监测及填充状态评价

  • 徐子瑶,车爱兰,周晗旭,袁刚烈,韩兆龙
作者信息 +

Sand filling process monitoring and filling status evaluation of immersed tunnel foundation

  • XU Ziyao,CHE Ailan,ZHOU Hanxu,YUAN Ganglie,HAN Zhaolong
Author information +
文章历史 +

摘要

沉管隧道的沉降主要由荷载、基础充填层等控制,基础充填层的填充状态直接影响沉管隧道的长期服役性能。由于基础充填层施工属于隐蔽工程,目前的砂量控制、压力监测、位移测量及施工后潜水探摸等间接测试方法,无法满足基础层填充效果评估的要求。利用弹性波响应强度与填充层映射关系,结合支持向量机算法,本文提出了基础灌砂充填状态评价模型。采用弹性波测试技术实时监测广州车陂路沉管隧道基础灌砂过程,对采集的弹性波数据进行时域、频域和时频域的分析,确定影响填充状态的弹性波特征参数。填充过程中灌砂层实时变化,各项特征参数均呈现动态波动的特征。根据砂盘形成机制将基础填充状态定义为砂盘形成、砂盘扩展两个状态,将灌砂总时间前30%采集的弹性波数据样本定义为未灌满状态,将砂盘扩展状态中与管节抬升、压力等监测结果一致的弹性波数据样本定义为灌满状态,开展支持向量机模型训练,模型查准率为87.5%。利用该模型对新修建的管节的砂盘扩散半径进行实时监测,结果表明随着灌砂的进行,砂盘扩展速度在进程前期快速衰减,后期趋于平稳且受到边界条件干涉的砂盘扩展速度比不受干涉的砂盘高23%。该管节工后沉降控制在2.5cm内,验证了模型的有效性。

Abstract

The settlement of immersed tunnel is mainly controlled by load and foundation filling layer, and the filling state of foundation filling layer directly affects the long-term service performance of immersed tunnel. Due to the construction of foundation filling layer is a concealed project, the current indirect testing methods such as sand volume control, pressure monitoring, displacement measurement and post construction diving exploration cannot meet the requirements of cushion filling effect evaluation. Based on the mapping relationship between elastic wave response strength and filling layer, combined with support vector machine algorithm, an evaluation model for basic sand filling is proposed in this paper. The elastic wave testing is used to monitor the sand filling process of Guangzhou chebei road tunnel in real time. The elastic wave data are analyzed in time domain, frequency domain and time-frequency domain to determine the characteristic parameters of elastic wave response that affect the filling state of the immersed tunnel foundation. Due to the real-time change of the sand filling layer during the filling process, the characteristic values show dynamic fluctuations. According to the formation mechanism of sand pan, the foundation filling state is defined as two states: sand pan formation and sand pan expansion. The elastic wave data samples collected in the first 30% of the total sand filling time are defined as the underfilled state, and the elastic wave data samples in the expanded state of the sand pan that are consistent with the monitoring results such as pipe joint lifting and pressure are defined as the filled state. Support vector machine model training is carried out, and the model precision is 87.5%. The model is used to monitor the diffusion radius of the sand disc of the newly built pipe joint in real time and quantitatively. The results show that with the progress of sand filling, the expansion speed of sand pan decreases rapidly in the early stage of the process, and tends to be stable in the later stage. The expansion speed of sand pan interfered by boundary conditions is 23% higher than that of sand pan not interfered with. The post construction settlement of the pipe joint is controlled within 2.5 cm, which verifies the effectiveness of the model.

关键词

基础灌砂 / 弹性波监测 / 状态评价

Key words

Sand filling of foundation / Elastic wave monitoring / Spatiotemporal evaluation

引用本文

导出引用
徐子瑶,车爱兰,周晗旭,袁刚烈,韩兆龙. 沉管隧道基础灌砂过程监测及填充状态评价[J]. 振动与冲击, 2023, 42(24): 204-211
XU Ziyao,CHE Ailan,ZHOU Hanxu,YUAN Ganglie,HAN Zhaolong. Sand filling process monitoring and filling status evaluation of immersed tunnel foundation[J]. Journal of Vibration and Shock, 2023, 42(24): 204-211

参考文献

[1] 张学明,闫维明,陈彦江,陈适才,陈红娟. 考虑行波效应的沉管隧道抗震性能:振动台阵试验研究[J]. 振动与冲击, 2018, 37(2): 76-84.
ZHANG Xueming, YAN Weiming, CHEN Yanjiang, et al. Shaking tables tests for an immersed tunnel model considering wave passage effect[J]. Journal of vibration and shock, 2018, 37(2): 76-84.
[2] Grantz W C. Immersed tunnel settlements - Parts 2: Case histories.[J]Tunnel and Underground Space Technology. 2001,16:203-210.
[3] 唐寅,车爱兰. 钢壳混凝土管节组合结构注浆效果扫描成像评价方法研究[J]. 振动与冲击, 2019, 38(21): 148-154.
TANG Yin, CHE Ailan. A scanning imaging evaluation method for grouting effect of a steel shell concrete tube joint structure[J]. Journal of vibration and shock, 2019, 38(21): 148-154.
[4] 程新俊, 景立平, 崔杰, 等.沉管隧道管节接头剪切破坏试验[J].中国公路学报,2020, 200(04):99-105.
CHENG Xinjun, JING Liping, CUI Jie, et al. Shear failure test of pipe joint in immersed tunnel[J]. Chinese Journal of highway, 2020, 200 (04): 99-105.
[5]黎伟. 沉管隧道地基砂流法加固的足尺试验及其机理研究[D].华南理工大学,2013.
LI Wei.Experimental and mechanism study on sand flow method for immersed tube tunnel foundation[D]. South China University of Technology,2013.
[6]徐干成,李永盛,孙钧,杨林德.沉管隧道的基础处理、基槽淤积和基础沉降问题[J].世界隧道,1995(03):2-18.
XU Gancheng, LI Yongsheng, SUN Jun et al. Foundation treatment, foundation trench siltation and foundation settlement of immersed tunnel[J]. World Tunnel,1995(03):2-18.
[7] 魏纲,裘慧杰,杨泽飞,王栋迪,邢建见.考虑回淤的沉管隧道基础层压缩模型试验研究[J].岩土工程学报,2014,36(08):1544-1552.
WEI Gang, QIU HuiJie, YANG ZeFei, et al. Model tests on compression of base layer of immersed tube tunnels considering siltation[J]. Chinese Journal of Geotechnical Engineering,2014,36(08):1544-1552.
[8]张庆贺,高卫平.水域沉管隧道基础处理方法的对比分析[J].岩土力学,2003,(S2):349-352.
ZHANG Qinghe, GAO Weiping. Comparison analysis on treatment methods of pipe-sinking tunnels[J]. Rock and Soil Mechanics, 2003,(S2):349-352.
[9] Wei L, Fang Y, Mo H, et al. Model test of immersed tube tunnel foundation treated by sand-flow method[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2014, 40(feb.):102-108.
[10] 房营光,黎伟,莫海鸿,谷任国,陈俊生.沉管隧道地基砂流法处理的砂盘扩展规律试验与分析[J].岩石力学与工程学报,2012,31(01):206-216.
FANG Yingguang, LI Wei, MO Hai-hong, et al.  Experiment and analysis of law of sand deposit expansion in foundation of immersed tube tunnel treated by sand flow method[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1):  206–216.
[11]冯少孔,黄涛,李海枫.大型预应力混凝土立墙内裂缝检测与成因浅析[J].上海交通大学学报,2015,49(07):977-982.
FENG Shaokong, HUANG Tao, LI Haifeng. Detection and cause
Analysis of internal cracks for large scale 2-derectional pre-stressed concrete walls[J]. Journal of Shanghaijiaotong University,2015,49(07):977-982.
[12]林天翔,冯少孔,叶冠林,顾广宇.顶管施工中管壁与围土间不同接触关系的冲击响应特征[J].岩土工程学报,2021,43(10):1924-1932+1961.
LIN Tianxiang, FENG Shaokong, YE Guanlin et al. Impact response characteristics under different contact relationships between pipe and soil in pipe-jacking construction[J].  Chinese Journal of Geotechnical Engineering, 2021,43(10):1924-1932+1961.
[13] 刘福寿,魏琦,徐文婷,谭国金.基于弹性波传播和谱单元法的桁架结构损伤检测[J].吉林大学学报(工学版),2021,51(06):2087-2095.
LIU Fushou, WEI Qi, XU Wenting, et al. Damage detection of truss structures based on elastic wave propagation and spectral element method[J]. Journal of Jilin University(Engineering and Technology Edition)2021,51(06):2087-2095.
[14] 姚怡文, 吴刚, 李志军, 等. 大型内河沉管隧道基础灌砂模型试验及效果检测技术研究[J]. 隧道建设, 2016, 36(09):1060-1070.
YAO Yi wen, WU Gang, LI Zhijun, et al. Study on sand filling model test and effect detection technology of large inland river immersed tunnel foundation[J]. Tunnel construction, 2016, 36 (09): 1060-1070.
[15] 徐慧峰,钱彦岭,邱静,尹晓虎.基于有限元的地下管线弹性波探测正演[J].振动与冲击,2010,29(10):56-60+112+250.
XU Huifeng, QIAN Yanling, QIU Jing et al. Forward modeling of elastic waves in underground pipeline detection based on finite element method[J]. Journal of vibration and shock, 2010,29(10):56-60+112+ 250.
[16] 李邦旭,马永浪,刘上春.沉管隧道砂基础空洞无损检测方法研究[J].现代隧道技术,2016,53(01):17-22+27.
LI Bangxu, MA Yonglang, LIU Shangchun. On nondestructive testing for cavities in immersed tunnel foundations by the sand-flow method[J]. Modern tunnelling technology, 2016,53(01):17-22+27.
[17] Feng X T, Zhao H, Li S. Modeling non-linear displacement time series of geo-materials using evolutionary support vector machines[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(7):1087-1107.
[18] Chen Liu, Yong junNi. Safety evaluation method of bridge plate rubber bearing based on SVM[J]. Vibro engineering PROCEDIA, 2019, 28.
[19] 乔朋, 梁志强, 徐凯, 等. 基于机器学习的中小跨径桥梁技术状况评估[J]. 长安大学学报(自然科学版), 2021, 41(06): 39-52.
QIAO Peng, LIANG Zhiqiang, XU Kai, et al. Technical condition evaluation of medium and small span bridges based on machine learning[J]. Journal of Chang'an University (NATURAL SCIENCE EDITION), 2021, 41 (06): 39-52.

PDF(2174 KB)

333

Accesses

0

Citation

Detail

段落导航
相关文章

/