斜裂缝梁的振动特性分析

霍瑞丽1,王坤1,张姗2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (24) : 212-220.

PDF(1352 KB)
PDF(1352 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (24) : 212-220.
论文

斜裂缝梁的振动特性分析

  • 霍瑞丽1,王坤1,张姗2
作者信息 +

Analysis of vibration characteristics of beam with diagonal cracks

  • HUO Ruili1,WANG Kun1,ZHANG Shan2
Author information +
文章历史 +

摘要

基于弹性力学平面应力理论,采用Chebyshev-Ritz法分析斜裂缝梁的振动特性。首先将斜裂缝梁划分成3个子域,再通过坐标变换将划分后的梯形子域等效转换为矩形子域,分别建立各子域的振动特征方程,根据各子域界面交界处的位移连续性得到整个梁的振动特征方程,利用Chebyshev-Ritz法求得具有高收敛性的解,通过实际算例与有限元分析结果、文献试验及理论结果进行对比,验证了该理论方法的精确性;通过参数分析研究了斜裂缝的倾斜角度和位置对结构振动特性的影响。研究结果表明,斜裂缝倾斜角度的增大将导致梁自振频率变大,振型的变化也更明显,斜裂缝位于跨中时对振型影响较大。

Abstract

The vibration characteristics of beams with diagonal crack were analyzed using the Chebyshev-Ritz method based on the elastic mechanics plane stress theory in this paper.The beam with diagonal crack was divided into three subdomains at first, and then the trapezoidal subdomain was transformed into a rectangular subdomain by coordinate transformation, and the vibration characteristic equations of each subdomain were established, respectively, and the vibration characteristic equation of the whole beam was obtained according to the displacement continuity at the interface junction of each subdomain, and the solution with high convergence was obtained by using the Chebyshev-Ritz method.The accuracy of the theoretical method was verified by comparing with the finite element results and literature experimental and theoretical results.The influence of the inclined angle and position of the diagonal crack on the vibration characteristics of the structure was studied by the way of parametric analysis.Results show that the increase of the inclined angle of the diagonal crack will lead to a larger natural frequency of the beam and a more obvious change of the vibration mode, and the influence on the vibration mode is greater when the diagonal crack locates in the middle of the span.

关键词

斜裂缝 / 平面应力理论 / Chebyshev-Ritz法 / 梯形子域 / 自振频率

Key words

diagonal cracks / plane stress theory / Chebyshev-Ritz method / trapezoidal subdomains / natural frequency

引用本文

导出引用
霍瑞丽1,王坤1,张姗2. 斜裂缝梁的振动特性分析[J]. 振动与冲击, 2023, 42(24): 212-220
HUO Ruili1,WANG Kun1,ZHANG Shan2. Analysis of vibration characteristics of beam with diagonal cracks[J]. Journal of Vibration and Shock, 2023, 42(24): 212-220

参考文献

[1] 石鲁宁, 闫维明, 何浩祥, 等. 基于裂缝梁动力特性和自振频率的参数敏感性[J]. 振动.测试与诊断. 2016, 36 (05). SHI Luning, YAN Weiming, HE Haoxiang, et al. Parameter sensitivity based on dynamic characteristics and self-oscillation frequency of cracked beams, Journal of vibration. testing and diagnosis. 2016, 36 (05). [2] Polskoy P P, Mailyan D, Beskopylny A N, et al. Bearing capacity of reinforced concrete beams with initial cracks reinforced with polymer composite materials[J]. Polymers, 2022. 14 (16): 3337. [3] Demir O. Prediction of crack initiation angle in brittle structures containing inclined cracks[J]. Mechanics of Solids, 2021,56 (6): 1066-1075. [4] Christides S, Barr A D S. One-dimensional theory of cracked Bernoulli-Euler beams [J]. Pergamon, 1984, 26(11):639-648. [5] Chondros T G, Dimarogonas A D, Yao J. A continuous cracked beam vibration theory [J]. Journal of Sound and Vibration, 1998, 215(1): 17-34. [6] 王术新, 姜哲. 裂缝悬臂梁的振动特性及其裂缝参数识别[J]. 振动与冲击, 2003, 22(3): 83-86 WANG Shuxin, JIANG Zhe. Vibration characteristics of cracked cantilever beams and their crack parameters identification[J]. Journal of vibration and shock, 2003, 22(3): 83-86 [7] 王敏杨, 刘文会, 朱志清, 等.等截面裂缝梁自由振动分析的反问题[J]. 四川水泥, 2019, (06). WANG Minyang, LIU Wenhui, ZHU Zhiqing, et al. Inverse problem of free vibration analysis of cracked beams with equal cross section[J]. Sichuan Cement, 2019, (06). [8] 王敏杨, 刘文会, 朱志清, 等. 等截面裂缝梁自由振动分析的正问题[J]. 吉林建筑大学学报, 2019, 36(04). WANG Minyang, LIU Wenhui, ZHU Zhiqing, et al. Positive problems of free vibration analysis of cracked beams with equal sections[J]. Journal of Jilin University of Architecture, 2019, 36(04). [9] 赵佳雷, 周叮, 张建东, 等. 基于Chebyshev-Ritz法分析多裂纹梁自振特性[J]. 浙江大学学报(工学版), 2020, 54(04):778-786. ZHAO Jialei, ZHOU Ding, ZHANG Jandong, et al. Analysis of self-oscillation characteristics of multi-cracked beams based on Chebyshev-Ritz method[J]. Journal of Zhejiang University (Engineering Edition), 2020, 54(04):778-786. [10] 赵佳雷, 周叮, 张建东, 等. 基于弹性力学的裂缝梁自由振动分析[J]. 振动与冲击, 2020, 39(12):78-84+102. ZHAO Jialei, ZHOU Ding, ZHANG Jandong, et al. Free vibration analysis of cracked beams based on elastic mechanics[J]. Vibration and Shock, 2020, 39(12):78-84+102. [11] 邓焱, 严普强. 梁及桥梁应变模态与损伤测量的新方法[J]. 清华大学学报(自然科学版), 2000(11):123-127. DENG Yan, YAN Puqiang. A new method for strain modal and damage measurement of beams and bridges [J]. Journal of Tsinghua University (Natural Science Edition), 2000(11):123-127. [12] 张姗, 周叮, 韩慧璇, 等. T型裂纹梁的自振特性分析 [J]. 振动与冲击. 2021, 40 (09): 30-36. ZHANG Shan, ZHOU Ding, HAN Huixuan, et al. Analysis of natural vibration characteristics of cracked T-beams [J]. Journal of vibration and shock, 2021,40(09): 30-36. [13] Shivani S, Raju S, Yuan H L, et al. Differential quadrature method based study of vibration behaviour of inclined edge cracked beams. Matec Web of Conferences, 2017.950. [14] 马辉, 曾劲, 郎自强, 等. 斜裂纹悬臂梁非线性振动特性分析[J].振动与冲击, 2016, 35(12): 86-91. MA Hui, ZENG Jin, LANG Ziqiang, et al. Analysis of nonlinear vibration characteristics of obliquely cracked cantilever beams[J]. Journal of vibration and shock, 2016, 35(12): 86-91. [15] Sunil R P, Sachin S N. Detection of inclined edge crack in prismatic beam using static deflection measurements [J]. Springer India, 2019, 44(2). [16] Nandwana B P, Maiti S K. Modelling of vibration of beam in presence of inclined edge or internal crack for its possible detection based on frequency measurements [J]. Engineering Fracture Mechanics, 1997, 58(3). [17] 李忠献, 刘永光. 基于遗传神经网络与模态应变能的斜裂缝两阶段诊断方法[J]. 工程力学, 2008(02):9-16+39. LI Zhongxian, LIU Yongguang. A two-stage diagnosis method for oblique cracks based on genetic neural network and modal strain energy [J]. Engineering Mechanics, 2008(02):9-16+39. [18] Ranjan K. Behera, Pandey A, et al. Numerical and Experimental Verification of a Method for Prognosis of Inclined Edge Crack in Cantilever Beam based on Synthesis of Mode Shapes [J]. Procedia Technology, 2014, 14. [19] 蒋杰, 周叮, 胡朝斌. 基于弹性力学的端部有裂缝悬臂梁的自由振动分析[J]. 振动与冲击, 2019, 38(15): 196-201. JIANG Jie, ZHOU Ding, HU Chaobin. Free vibration analysis of cantilever beams with cracked ends based on elastic mechanics[J]. Journal of vibration and Shock, 2019, 38(15): 196-201. [20] 蒋杰, 周叮. 两端有裂纹固支深梁的振动特性分析[J].建筑结构学报, 2018, 39(S2): 183-190. JIANG Jie, ZHOU Ding. Vibration characteristics analysis of solid-supported deep beams with cracks at both ends[J]. Journal of Building Structures, 2018, 39(S2): 183-190. [21] 王玮瑾,金属薄板裂纹检测方法研究[D]. 哈尔滨工业大学, 2011, 05. WANG Weijin. Study of the sheet metal crack detection [D]. Harbin Institute of Technology, 2011, 05.

PDF(1352 KB)

384

Accesses

0

Citation

Detail

段落导航
相关文章

/