超磁致伸缩换能器磁路设计及振动性能测试

刘强1,秦慧斌2,贺西平1,王一凡1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (24) : 228-236.

PDF(2485 KB)
PDF(2485 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (24) : 228-236.
论文

超磁致伸缩换能器磁路设计及振动性能测试

  • 刘强1,秦慧斌2,贺西平1,王一凡1
作者信息 +

Magnetic circuit design and vibration performance test of a giant magnetostrictive transducer

  • LIU Qiang1,QIN Huibin2,HE Xiping1,WANG Yifan1
Author information +
文章历史 +

摘要

本文研制了一种超磁致伸缩换能器。为了改善磁路,提高换能器的振动性能,利用有限元方法对换能器进行仿真计算,重点研究了导磁块和导磁筒对换能器性能的影响,又仿真计算了换能器工作时的温升。对研制的换能器阻抗和振幅进行了测量。结果表明,随着导磁筒厚度的增加,Terfenol-D棒的磁场强度先增大后减小,磁场均匀度先减小后不变,输出振幅先增大后略有减小;随着导磁块厚度的增大,Terfenol-D棒的磁场强度和磁场均匀度增大,输出振幅也增大。与无导磁筒的换能器相比,有导磁筒的换能器的机电转换系数和输出振幅均较大,但工作相同时间后的温度较高。本文的研究提供一种对超磁致伸缩换能器的磁路结构进行设计优化,并提高其振动性能的仿真计算方法。

Abstract

A giant magnetostrictive transducer was developed. To improve the magnetic circuit and the vibration performance of the transducer, the finite element method was used to simulate and calculate the transducer, focusing on the influence of the magnetic conductive block and the magnetic cylinder on the performance of the transducer, and the temperature rise of the transducer during operation was simulated and calculated. The impedance and amplitude of the developed transducer were measured. The results show that the magnetic field strength of Terfenol-D rod increased and then decreased, the magnetic field uniformity decreased and then remains unchanged, and the output amplitude increased and then decreased slightly with the increase of the thickness of the magnetic cylinder. As the thickness of the magnetic conductive block increased, the magnetic field strength and magnetic field uniformity of the Terfenol-D rod increased, and the output amplitude also increased. Compared with the transducer without magnetic cylinder, the transducer with magnetic cylinder has larger electromechanical conversion coefficient and output amplitude, but the temperature was higher after working the same time. The research in this paper provides a simulation calculation method to optimize the magnetic circuit structure of the giant magnetostrictive transducer and improve its vibration performance.

关键词

超磁致伸缩材料 / 超声换能器 / 磁路优化 / 有限元方法

Key words

giant magnetostrictive material / ultrasonic transducer / magnetic circuit optimization / finite element method

引用本文

导出引用
刘强1,秦慧斌2,贺西平1,王一凡1. 超磁致伸缩换能器磁路设计及振动性能测试[J]. 振动与冲击, 2023, 42(24): 228-236
LIU Qiang1,QIN Huibin2,HE Xiping1,WANG Yifan1. Magnetic circuit design and vibration performance test of a giant magnetostrictive transducer[J]. Journal of Vibration and Shock, 2023, 42(24): 228-236

参考文献

[1] Yao Y, Pan Y, Liu S. Power ultrasound and its applications: A state-of-the-art review [J]. Ultrasonics sonochemistry, 2020, 62: 104722.
[2] Zhou H, Zhang J, Yu D, et al. Advances in rotary ultrasonic machining system for hard and brittle materials [J]. Advances in Mechanical Engineering, 2019, 11(12): 1-13.
[3] Liu W J, Zhou L S, Xia T J, et al. Rare earth ultrasonic transducer technique research [J]. Ultrasonics, 2006, 44(4): e689-e92.
[4] Zhou H, Zang J F, Feng P, et al. On the optimum resonance of giant magnetostrictive ultrasonic transducer with capacitance-based impedance compensation [J]. Smart Materials and Structures, 2020, 29(10): 105002.
[5] Li P Y, Liu Q, Zhou X, et al. Effect of Terfenol-D rod structure on vibration performance of giant magnetostrictive ultrasonic transducer [J]. Journal of Vibration and Control, 2020, 27(5-6): 573-81.
[6] Mortensen A P, Dapino M J. Broadband acoustic transducer driven by magnetostrictive composite rod and electrostrictive stack [J]. Journal of Sound and Vibration, 2007, 307(3): 983-991.
[7] Zhou H, Zhang J, Feng P, et al. An output amplitude model of a giant magnetostrictive rotary ultrasonic machining system considering load effect [J]. Precision Engineering, 2019, 60:340-347.
[8] Zhou H, Zhang J, Feng P, et al. Investigations on a mathematical model for optimum impedance compensation of a giant magnetostrictive ultrasonic transducer and its resonance characteristics[J]. Ultrasonics, 2021, 110:106286.
[9] Teng D, Zhu N. Research on the Low Frequency Broadband Piezoelectric-Magnetostrictive Hybrid Transducer [J]. Discrete Dynamics in Nature and Society, 2016, 2016:1652080.
[10] Sheykholeslami M, Hojjat Y, Cinquemani S, et al. An approach to design and fabrication of resonant giant magnetostrictive transducer [J]. Smart Structures and Systems, 2016, 17(2): 313-25.
[11] 李英明, 莫喜平, 柴勇, 等. 铁镓复合棒换能器设计及非线性驱动研究 [J]. 声学学报, 2016, 41(03): 428-434.
LI Yingming, MO Xiping, CHAI Yong, et al. Research on nonlinear driving manner of Galfenol transducer [J]. Acta Acustica, 2016, 41(03): 428-434.
[12] 李琳, 陈亮良, 杨勇. 超磁致伸缩作动器的结构分析 [J]. 北京航空航天大学学报, 2013, 39(9): 1269-1274.
LI Lin, CHEN Liangliang, YANG Yong. Structural analysis of giant magnetostrictive actuator [J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(9): 1269-1274.
[13] Teng D, Li Y T. Finite element solutions for magnetic field problems in Terfenol-D transducers [J]. Sensors, 2020, 20(10): 2808.
[14] Bai Z, Zhang Z, Wang J, et al. Numerical evaluation and experimental test on a new giant magnetostrictive transducer with low heat loss design [J]. micromachines, 2021, 12(11): 1397
[15] 李明范, 项占琴, 吕福在. 超磁致伸缩换能器磁路设计及优化 [J]. 浙江大学学报(工学版), 2006, 40(2):192-196.
LI Mingfan, XIANG Zhanqin, LV Fuzai. Magnet circuit design and optimization of giant magnetostrictive transducer [J]. Journal of Zhejiang University (Engineering Science), 2006, 40(2):192-196.
[16] 蔡万宠, 张建富, 郁鼎文, 等. 超磁致伸缩超声振动系统的机电转换效率研究 [J]. 机械工程学报, 2017, 53(19): 52-58.
CAI Wanchong, ZHANG Jianfu, YU Dingwen, et al. Research on the Electromechanical Conversion Efficiency for Giant Magnetostrictive Ultrasonic Machining System [J]. Journal of Mechanical Engineering, 2017, 53(19): 52-58.
[17] 高晓辉, 刘永光, 裴忠才. 超磁致伸缩作动器磁路优化设计 [J]. 哈尔滨工业大学学报, 2016, 48(9): 145-150.
GAO Xiaohui,LIU Yongguang,PEI Zhongcai. Optimization and design for magnetic circuit in giant magnetostrictive actuator [J]. Journal of Harbin Institute of Technology, 2016, 48(9): 145-150.
[18] 李鹏阳, 刘强, 李伟, 等. 超磁致伸缩超声换能器结构研究 [J]. 振动与冲击, 2021, 40(11), 196-201.
LI Pengyang, LIU Qiang, LI Wei, et al. Structure of giant magnetostrictive ultrasonic transducer [J]. Journal of Vibration and Shock, 2021, 40(11), 196-201.
[19] 李跃松, 朱玉川, 吴洪涛, 等. 射流伺服阀用超磁致伸缩执行器磁场建模与分析 [J]. 兵工学报, 2010, 31(12): 1587-1592.
LI Yuesong, ZHU Yuchuan, WU Hongtao, et al. The Magnetic Field Modeling and Analysis of Giant Magnetostrictive Actuator for Jet Servo Valve [J]. Acta Armamentarii, 2010, 31(12): 1587-1592.
[20] Liu P, Kong M, Diao W, et al. High-speed giant magnetostrictive actuator using laminated silicon steel core [J]. Review of scientific Instruments, 2021, 92(5): 055004.
[21] Hamonic B F, Wilson O B, Decarpigny J N, et al. Power transducers for sonics and ultrasonics [M]. Springer Berlin Heidelberg, 1991.
[22] 殷振. 复合梁变幅杆单激励超声椭圆振动切削基础研究 [D]. 南京: 南京航空航天大学, 2018.
YIN Zhen. Fundamental Research on Single Driven Ultrasonic Elliptical Vibration Cutting with Combined-beam Horn [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
[23] 钟文定. 铁磁学 [M]. 北京: 科学出版社, 2017.
ZHONG Wending. Ferromagnetism [M]. Beijing: Science Press, 2017.
[24] Liu Q, He X. Effects of core structure on the performance of Terfenol-D rod [J]. Journal of Vibration and Control, 2022; 0(0): 10775463221102668.
[25] Ju X, Lu J, Jin H. Study on heat transfer characteristics and thermal error suppression method of cylindrical giant magnetostrictive actuator for ball screw preload [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 235(5): 782-94.
[26] Wakiwaka H, Lio M, Nagumo M, et al. Impedance analysis of acoustic vibration element using giant magnetorestrictive material [J]. IEEE Transactions on Magnetics, 1992, 28(5): 2208-10.

PDF(2485 KB)

419

Accesses

0

Citation

Detail

段落导航
相关文章

/