海上风力机防护装置布孔方式及性能研究

王瑀琎1,赵鑫磊1,岳新智1,李春1,2,岳敏楠1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (24) : 249-256.

PDF(2354 KB)
PDF(2354 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (24) : 249-256.
论文

海上风力机防护装置布孔方式及性能研究

  • 王瑀琎1,赵鑫磊1,岳新智1,李春1,2,岳敏楠1
作者信息 +

A study of the hole setting methods and performance of offshore wind turbine protection devices

  • WANG Yujin1, ZHAO Xinlei1, YUE Xinzhi1, LI Chun1,2, YUE Minnan1
Author information +
文章历史 +

摘要

海上风力机存在受船舶碰撞的风险隐患,一旦发生将导致风力机损伤甚至倒塌事故,造成严重经济损失,因此有必要对其进行防护设计以提高安全性。为此采用显示动力分析软件LS-DYNA,通过对防护装置设置通孔,研究孔数及相对角度对防护性能的影响。结果表明:设孔防护装置可延长船舶与风力机接触时间,强化能量转化效果,降低船舶回弹能量;三孔防护装置吸能效果最优,单孔与双孔结构设孔角度分别取50°、60°范围内,其吸能效果均优于无孔防护装置;在船艏撞击范围内设孔,可为橡胶材料提供额外变形空间,增强防护装置抗撞能力;多孔防护装置孔间材料承担主要变形吸能作用,合适的孔间距有助于提高防护性能;孔间距较小的防护装置能吸收较多能量,但易导致材料压溃失效。

Abstract

Offshore wind turbine are at risk of collision with ships, which will cause wind turbines to be damaged or even collapse , causing serious economic losses. Therefore, it is necessary to propose protective design to improve the safety. To this end, the explicit dynamic analysis software LS-DYNA is utilized to study the influence of the number of holes and the on the protection performance by setting via holes for the protection device. The simulation is based on the collision between a 5000 tons ship and a 4MW wind turbine equipped by protective device which has one hole or multiple holes with different relative angles. The results show that: The perforated  protection device can prolong the contact time between the ship and the offshore wind turbine and enhance the energy conversion effect and consequently reduce the rebound energy of the ship; The energy absorption effect of the three-hole protection device is the best, the energy absorption effect of the single-hole and double-hole structure is better than that of the non-hole protection device when the hole angle is 50° and 60° respectively; The hole in the collision range of the bow can provide additional deformation space for the rubber material and improve the anti-collision ability of the protection device; The material between the holes of the porous protective device is responsible for the main deformation and energy absorption, and the appropriate hole spacing helps to improve the protective performance; The protective device with smaller hole spacing can absorb more energy, but it is easy to cause the material to fail.

关键词

海上风力机 / 设孔结构 / 防护设计 / 防护性能

Key words

offshore wind turbine- / perforated structure / anti-collision design / protective performance

引用本文

导出引用
王瑀琎1,赵鑫磊1,岳新智1,李春1,2,岳敏楠1. 海上风力机防护装置布孔方式及性能研究[J]. 振动与冲击, 2023, 42(24): 249-256
WANG Yujin1, ZHAO Xinlei1, YUE Xinzhi1, LI Chun1,2, YUE Minnan1. A study of the hole setting methods and performance of offshore wind turbine protection devices[J]. Journal of Vibration and Shock, 2023, 42(24): 249-256

参考文献

[1] 马丽梅,史丹,裴庆冰.中国能源低碳转型(2015-2050):可再生能源发展与可行路径[J].中国人口•资源与环境,2018,28(2):8-18.
MA Li-mei, SHI Dan, PEI Qing-bing. Low-carbon transformation of China’s energy in 2015-2050: renewable energy development and feasible path[J]. China popular, resource and environment, 2018, 28(2): 8-18.
[2] 王仲颖,石璟丽,赵勇强.中国风电发展路线图2050[R].北京:国家发展和改革委员会能源研究所,2014.
 WANG Zhong-ying, SHI Jing-li, ZHAO Yong-qiang. China’s medium and long-term wind power roadmap 2050[R]. Beijing: National Development and Reform Commission Energy Institute, 2014.
[3] Ding Q W, Li C. Research on the influence of helical strakes on dynamic response of floating wind turbine platform[J]. China Ocean Engineering, 2017, 31(2): 131-140.
[4] 韩志伟,李春,周红杰,等.海上风力机与船舶碰撞的动力响应及防碰护装置[J].中国机械工程,2019,30(12):1387-1394.
 HAN Zhi-wei, ZHOU Hong-jie, LI Chun, et al. Dynamic Response and Anti Collision Devices of an offshore Wind turbine Subjiected to Ship Impacts[J]. China mechanical engineering, 2019, 30(12): 1387-1394.
[5] Global Offshore Wind Healthy and Safety Organisation, G+ 2019 Incident data report[R/OL](2020-07)[2020-08]. https://www.gplusoffshorewind.com/_data/assets/pdf_file/0004/752863/PDF-G-2019-incident-report.pdf.
[6] DING H Y, ZHU Q, ZHANG P Y. Dynamic simulation on collision between ship and offshore wind turbine[J]. Transactions of Tianjin University, 2014, 20(1): 1-6.
[7] 莫仁杰.海上风机桩式基础灌浆连接段可靠性研究[D].大连:大连理工大学,2017.
 MO Ren-jie. Research on reliability of grouted connection for offshore wind turbinepile foundation[D]. Dalian university of technology, 2017.
[8] Biehl F, Lehmann E. Collisions of ships and offshore wind turbines: calculation and risk evaluation[C]. //Offshore wind turbine. Berlin: Springer Berlin Heidelberg, 2006.
[9] 刘宇航,李春,周红杰,等.三种海上风力机支撑基础与船舶碰撞的动力响应分析[J].中国机械工程,2019,30(14):1646-1652.
 LIU Yu-hang, LI Chun, ZHOU Hong-jie, et.al. Analysis of dynamic response of collision between three types of offshore wind turbine foundation and ship[J]. China mechanical Engineering, 2019, 30(14): 1646-1652.
[10] Moulas D, Shafiee M, Mehmanparast A. Damage analysis of ship collision with offshore wind turbine foundations[J]. Ocean Engineering, 2017, 143: 149-162.
[11] DAI L J, Ehlers S, Rausand M, et al. Risk of collision between service vessels and offshore wind turbines[J]. Reliability Engineering and System Safety, 2013, 109: 18-31.
[12] HAN Z W, LI C, DENG Y H, et al. The analysis of anti-collision performance of the fender with offshore wind turbine tripod impacted by ship and the coefficient of restitution[J]. Ocean Engineering, 2019, 194: 106614.
[13] LIU C G, HAO E T, Zhang S B. Optimization and application of a crashworthy device for the monopile offshore wind turbine against ship impact[J]. Applied Ocean Research, 2015, 51: 129-137.
[14] Lee K. Effects on the various rubber fender of a tripod offshore wind turbine substructure collision strength due to boat[J]. Ocean Engineering, 2013, 72: 188-194.
[15] 许子非,李春,叶柯华,等.海冰载荷作用下风力机抗冰锥体减载研究[J].热能动力工程,2018,33(8):121-128.
 XU Zi-fei, LI Chun, YE Ke-hua, et.al. Load reduction Characteristic of Anti-ice Cone for Offshore Wind Turbine under ice Loading Condition[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(8): 121-128.
[16] Ren N, Ou J. A crashworthy device against ship-OWT collision and its protection effects on the tower of offshore wind farms[J]. China Ocean Engineering, 2009, 23(4): 593-602.
[17] 彭文山,刘雪健,刘少通,等.含砂流动海水中Q235钢冲刷腐蚀行为研究[J].表面技术,2019,48(9):230-237.
 PENG Wen-shan, LIU Xue-jian, LIU Shao-tong. sion-corrosion Behavior of Q235 Steel in Flowing Seawater Containing Sand Particles[J]. SURFACE TECHNOLOGY, 2019, 48(9): 230-237.
[18] 刘晨,何建军,王刚,等.塔筒钢在模拟海洋环境下的慢应变拉伸性能研究[J].太阳能学报,2020,41(2):73-77.
 LIU Chen, HE Jian-jun, WANG Gang, et al. Study on slow strain rate tensile properties of tower tube steel in simulation ocean environment[J]. Acta Energiae Solaris Sinica, 2020, 41(2): 73-77.
[19] 王艺陶,冯国庆,李陈峰,等.船用Q235钢裂纹扩展速率试验[J].哈尔滨工程大学学报,2015,36(10):1302-1306.
 WANG Yi-tao, FENG Guo-qing, LI Chen-feng, et.al. Crack propagation rate tests of marine steel Q235[J]. Journal of Harbin Engineering University, 2015, 36(10): 1302-1306.
[20] 孟利平,程远征,张伦平,等.应变率和应力三轴度对Q345B钢动态力学性能的影响研究[J].船舶力学,2019,23(10):1210-1220.
 MENG Li-ping, CHENG Yuan-zheng, ZHANG Lun-ping, et.al. Influence of strain rate and stress triaxiality on the dynamic mechanical behavior of Q345B steel[J]. Journal of Ship Mechanics, 2019, 23(10): 1210-1220.
[21] 支旭东,张荣,林莉,等.Q235B钢动态本构及在LS-DYNA中的应用[J].爆炸与冲击,2018,38(3):596-602.
 ZHI Xu-dong, ZHANG Rong, LIN Li, et.al. Dynamic constitutive model of Q235B steel andits application in LS-DYNA[J]. Explosion and Shock Waves, 2018, 38(3): 596-602.
[22] 白金泽.Ls-Dyna3D理论基础与实例分析[M].北京:科学技术出版社,2005.
 BAI Jin-ze. Theoretical basis and case analysis of LS-DYNA3D[M]. Beijing: science and technology press, 2005.
[23] 王国权,刘萌,姚艳春,等.不同本构模型对橡胶制品有限元法适应性研究[J].力学与实践,2013,35(4):40-47.
 WANG Guo-quan, LIU Meng, YAO Yan-chun, et.al. Application of constitutive model in the nonlinear finite element method for rubber part[J]. Mechanics in Engineering, 2013, 35(4): 40-47.
[24] 张希润,蔡力勋,陈辉.基于能量密度等效的超弹性压入模型与双压试验方法[J].力学学报,2020,52(3):787-796.
 ZHANG Xi-run, CAI Li-xun, CHEN Hui. Hyperelastic indentation models and the duel-indention method based on energy density equivalence[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 787-796.
[25] Hallquist J, Goudreau G, Benson D. Sliding interfaces with contact-impact in large-scale Lagrangian computations[J]. Computer Methods in Applied Mechanics and Engineering, 1985, 51: 107-137.
[26] Hallquist J. LS-DYNA theoretical manual[M]. Livermore Software Technology Corporation, 2006.
[27] 王自力,蒋志勇,顾永宁.船舶碰撞数值仿真的附加质量模型[J].爆炸与冲击,2002,22(4):321-326.
 WANG Zi-li, JIANG Zhi-yong, GU Yong-ning. Additional mass model for numerical simulation of ship collision[J]. Explosion and Shock Waves, 2002,22(4): 321-326.
[28] Minorsky V U. An analysis of ship collision to protection of nuclear powered plant[J]. Ship Research, 1959, 1: 1-4
[29] 同济大学土木工程防灾国家重点实验室.南京长江第四大桥船舶撞击动力分析研究[R].上海:同济大学,2007.
 State Key Laboratory of Civil Engineering Disaster Prevention, Tongji University. Research on ship impact dynamic analysis of Nanjing Fourth Yangtze River Bridge[R]. Shanghai: Tongji University, 2007.
[30] Petersen M J. Dynamic of ship collisions[J]. Ocean Engineering, 1982,9( 4) : 295-329
[31] HAO Ertong, LIU Chunguang. Evaluation and comparison of anti-impact performance to offshore wind turbine foundation: Monopile, tripod and jacket[J]. Ocean Engineering, 2017, 130: 218-227.
[32] APIRP. 2A-WSD recommended practice for planning, designing and constructing fixed offshore platforms-working stress design[S]. Washington D C: American Petroleum Institute, 2000.
[33] DNV-RP-C204. Design against accidental laods[S]. Hovik: Det Norske Veritas, 2010.
[34] 石少卿,康建功,汪敏,等.ANSYS/LS-DYNA在爆炸与冲击领域内的工程应用[M].北京:中国建筑工业出版社,2011.
 SHI Shao-qing, KANG Jian-gong, WANG min, et.al. Engineering application of ANSYS / LS-DYNA in the field of explosion and shock[M]. Beijing: China building industry press,2011.
[35] 莫袁鸣.金属-复合材料双层壁结构冰撞击响应与损伤研究[D].南京:南京航空航天大学,2018.
 MO Yuan-ming. Study on iceimpact response and damage of metal-composite double wall structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.

PDF(2354 KB)

Accesses

Citation

Detail

段落导航
相关文章

/