基于CCA和多通道循环维纳滤波的滚动轴承故障源分析

张伟涛1,张东江1,纪晓凡1,黄菊2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (24) : 317-325.

PDF(2061 KB)
PDF(2061 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (24) : 317-325.
论文

基于CCA和多通道循环维纳滤波的滚动轴承故障源分析

  • 张伟涛1,张东江1,纪晓凡1,黄菊2
作者信息 +

Fault analysis of rolling element bearing based on CCA and a multichannel cyclic Wiener filter

  • ZHANG Weitao1, ZHANG Dongjiang1, JI Xiaofan1, HUANG Ju2
Author information +
文章历史 +

摘要

针对低信噪比下循环维纳滤波方法在滚动轴承故障源分析中失效的问题,提出一种基于规范相关分析(canonical correlation analysis,CCA)的多通道循环维纳滤波轴承故障源分析方法。首先利用CCA准则结合轴承单一故障的特征频率,提出了故障特征盲提取的共轭梯度优化算法。然后将现有单通道循环维纳滤波器推广到多通道循环维纳滤波,并将CCA盲提取得到的故障特征信号作为多通道循环维纳滤波的期望信号,从而恢复故障源信号。最后通过包络谱分析实现故障源识别。提出的方法利用盲信号提取技术从实际观测信号中获得循环维纳滤波所需的期望信号,避免了期望信号的人工合成方法过分依赖轴承参数和信号采样参数的问题。此外,提出的方法在故障源信号恢复过程中充分利用了所有通道信息,克服了单通道循环维纳滤波方法故障源信号恢复效果对高信噪比的严苛要求。仿真和实验结果表明,提出的方法极大地提高了滚动轴承故障源分析的可靠性。

Abstract

Aiming at the problem that the existing cyclic Wiener filter almost fail to diagnose the composite fault of bearing under the condition of low signal-to-noise ratio, we proposed a composite fault diagnosis method for rolling bearing based on CCA criterion and multi-channel cyclic Wiener filter. Firstly, the fault characteristic signal is extracted blindly under CCA criterion based on the proposed conjugate gradient descent algorithm, the extracted signal is then used as the expectation signal of cyclic Wiener filter, and the multi-channel information is used to recover the fault source signal. Finally, the analysis of the envelope spectrum of the fault source signal implemented the recognition of bearing fault. The simulation and experimental results show that compared with the single channel cyclic Wiener filtering method, the proposed method makes full use of the observations from all channels, which avoided the problem that the existing methods rely too much on the certain observation from high signal-to-noise ratio channel, and improved the reliability of cyclic Wiener filter for composite fault diagnosis of rolling bearing.

关键词

故障诊断 / 滚动轴承 / 循环维纳滤波器

Key words

Fault diagnosis / Rolling bearing / Cyclic Wiener filter

引用本文

导出引用
张伟涛1,张东江1,纪晓凡1,黄菊2. 基于CCA和多通道循环维纳滤波的滚动轴承故障源分析[J]. 振动与冲击, 2023, 42(24): 317-325
ZHANG Weitao1, ZHANG Dongjiang1, JI Xiaofan1, HUANG Ju2. Fault analysis of rolling element bearing based on CCA and a multichannel cyclic Wiener filter[J]. Journal of Vibration and Shock, 2023, 42(24): 317-325

参考文献

[1] SMITH W A, RANDALL ROBERT R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64/65: 100-131. [2] ANTONI J, BONNARDOT F, RAAD A, et al. Cyclostationary modelling of rotating machine vibration signals [J]. Mechanical Systems and Signal Processing, 2004, 18(6): 1285-1314. [3] 蔡艳平, 李艾华, 石林锁. 基于EMD与谱峭度的滚动轴承故障检测改进包络谱分析[J]. 振动与冲击, 2011, 30(2): 167-172+191. CAI Yanping, LI Aihua, SHI Linsuo. Roller bearing fault detection using improved envelope spectrum analysis based on EMD and spectrum kurtosis[J]. Journal of Vibration and Shock, 2011, 30(2): 167-172+191. [4] 李从志, 郑近德, 潘海洋. 基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法[J]. 中国机械工程, 2019, 30(14): 1713-1719+1726. LI Congzhi, ZHENG Jinde, PAN Haiyang, et al. Fault diagnosis method of rolling bearings based on refined composite multiscale entropy and support vector machine[J]. China Mechanical Engineering, 2019, 30(14): 1713-1719+1726. [5] 陈是扦,彭志科,周鹏. 信号分解及其在机械故障诊断中的应用研究综述[J]. 机械工程学报, 2020, 56(17): 91-107. CHEN Shiqian, PENG Zhike, ZHOU Peng. Review of Signal Decomposition Theory and Its Applications in Machine Fault Diagnosis[J]. Journal of Mechanical Engineering, 2020, 56(17): 91-107. [6] 刘文朋, 刘永强, 杨绍普. 基于典型谱相关峭度图的滚动轴承故障诊断方法[J]. 振动与冲击, 2018, 31: 89-93. LIU Wenpeng, LIU Yongqiang, YANG Shaopeng, et al. Fault diagnosis of rolling bearing based on typical correlated kurtogram[J]. Journal of Vibration and Shock, 2018, 31: 89-93. [7] 陈鹏,赵小强. 基于平方包络谱负熵准则的轴承早期复合故障特征提取方法[J]. 振动与冲击, 2022, 41(8): 179-187. CHEN Peng, ZHAO Xiaoqiang. An early composite fault feature extraction method of bearing based on square envelope spectrum negentropy criterion. JOURNAL OF VIBRATION AND SHOCK, 2022, 41(8): 179-187. [8] 姚德臣, 杨建伟, 程晓卿, 等. 基于多尺度本征模态排列熵和SA-SVM的轴承故障诊断研究[J]. 机械工程学报, 2018, 54(09): 168-176. YAO Dechen, YANG Jianwei, CHENG Xiaoqing, et al. Railway Rolling Bearing Fault Diagnosis Based on Muti-scale IMF Permutation Entropy and SA-SVM Classifier[J]. Journal of Mechanical Engineering, 2018, 54(09): 168-176. [9] HAN Tian, ZHANG Longwen, YIN Zhongjun, et al. Rolling bearing fault diagnosis with combined convolutional neural networks and support vector machine[J]. Measurement, 2021, 177. [10] 雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5): 94-104. LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and Challenges of Machinery Intelligent Fault Diagnosis in Big Data Era[J]. Journal of Mechanical Engineering, 2018, 54(05): 94-104. [11] 沈长青, 汤盛浩, 江星星. 独立自适应学习率优化深度信念网络在轴承故障诊断中的应用研究[J]. 机械工程学报, 2019, 55(07): 81-88. SHEN Changqing, TANG Shenghao, JIANG Xingxing, et al. Bearings Fault Diagnosis Based on Improved Deep Belief Network by Self-individual Adaptive Learning Rate[J]. Journal of Mechanical Engineering, 2019, 55(07): 81-88. [12] XUE F, ZHANG W M, XUE F, et al. A novel intelligent fault diagnosis method of rolling bearing based on two-stream feature fusion convolutional neural network[J]. Measurement, 2021, 176. [13] MAO Wentao, CHEN Jiaxian, LIANG Xihui, et al. A New Online Detection Approach for Rolling Bearing Incipient Fault via Self-Adaptive Deep Feature Matching[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(2): 443-456. [14] LI Xiang, ZHANG Wei, DING Qian. Understanding and improving deep learning-based rolling bearing fault diagnosis with attention mechanism[J]. Signal Processing, 2019, 161: 136-154. [15] 明阳, 陈进, 董广明. 基于循环维纳滤波器和包络谱的轴承故障诊断[J]. 振动工程学报, 2010, 23(05): 537-540. MING Yang, CHEN Jin, DONG Guangming. Rolling bearing fault diagnosis based on cyclic Wiener filter and envelop spectrum[J]. Journal of Vibration Engineering, 2010, 23(05): 537-540. [16] 张峰, 马舒啸, 石现峰. 基于循环维纳滤波的振动信号去噪算法研究[J]. 计算机技术与发展, 2014, 24(06): 49-51. ZHANG Feng, MA Shuxiao, SHI Xianfeng. Research on Denoising Algorithm of Vibration Signal Based on Cricular Wiener Filtering[J]. Computer Technology and Development, 2014, 24(06): 49-51. [17] 张爽,王晓东,李祥,杨创艳. 基于FVMD的滚动轴承故障特征提取方法[J]. 振动与冲击, 2022, 41(6): 236-244. ZHANG Shuang, WANG Xiaodong, LI Xiang, YANG Chuangyan. Extraction method of rolling bearing fault characteristics based on FVMD. JOURNAL OF VIBRATION AND SHOCK, 2022, 41(6): 236-244. [18] 张峰,胡艳涛,石现峰.振动信号离散余弦变换域循环维纳滤波算法[J].西安工业大学报, 2015, 35(05): 360-364. ZHANG Feng, MA Shuxiao, SHI Xianfeng. CyclicWinener Filtering Algorithm in Discrete Cosine Transform Domain for Vibration Signals[J]. Journal of Xi'an Technological University, 2015, 35(05): 360-364. [19] 郝芳, 王宏超. 改进循环维纳滤波器算法的滚动轴承复合故障诊断[J]. 中国工程机械学报, 2018, 16(04): 371-376. HAO Fang, WANG Hongchao. Fault diagnosis of rolling element bearing compound faults basing on improved cyclic wiener filter algorithm [J]. Chinese Journal of Construction Machinery, 2018, 16(04): 371-376. [20] 晏云海,郭瑜,伍星. 基于循环谱分析的鲁棒性滚动轴承故障特征提取方法[J]. 振动与冲击, 2022, 41(6): 1-7. YAN Yunhai,GUO Yu,WU Xing. Robust rolling bearing fault feature extraction method based on cyclic spectrum analysis. JOURNAL OF VIBRATION AND SHOCK, 2022, 41(6): 1-7. [21] 明阳. 基于循环平稳和盲源分离的滚动轴承故障特征提取方法研究[D].上海交通大学, 2013. MING Yang. Study on Cyclostationarity and Blind Source Separation-Based Rolling Element Bearing Fault Feature Extraction[D]. SHANGHAI JIAO TONG UNIVERSITY, 2013. [22] ZHANG W-T, LOU S-T, FENG D-Z. Adaptive quasi-Newton algorithm for source extraction via CCA approach [J]. IEEE Transactions on Neural Networks & Learning Systems, 2014, 25(4): 677 – 689. [23] Case Western Reserve University, Bearing Data Center, Seeded Fault Test Data, https://engineering.case.edu/ bearingdatacenter.

PDF(2061 KB)

389

Accesses

0

Citation

Detail

段落导航
相关文章

/