柔性轮对作用下浮轨式扣件轨道动力特性分析

姚学东,李伟,周志军,温泽峰

振动与冲击 ›› 2023, Vol. 42 ›› Issue (24) : 42-50.

PDF(2944 KB)
PDF(2944 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (24) : 42-50.
论文

柔性轮对作用下浮轨式扣件轨道动力特性分析

  • 姚学东,李伟,周志军,温泽峰
作者信息 +

Analysis on dynamic characteristics of track with floating fasteners considering loading of flexible wheelsets

  • YAO Xuedong,LI Wei,ZHOU Zhijun,WEN Zefeng
Author information +
文章历史 +

摘要

浮轨式扣件是一种高等减振扣件,在我国地铁线路服役后出现钢轨短波长波磨,导致显著的车内振动噪声。为探明浮轨式扣件轨道动力特性,利用有限元软件ABAQUS建立浮轨式扣件轨道结构三维实体有限元模型,采用模态分析和谐响应分析研究柔性轮对作用下的轨道动力特征。结果表明:周期性离散支撑轨道的简化截断边界引起的高频振动波反射效应对轨道动力特性影响明显,浮轨式扣件轨道模型长度涵盖大于80个承轨台间距后可忽略边界波反射的影响;轨道结构在80 Hz以下主要表现为钢轨和道床板整体的弯曲和扭转振动,大于80 Hz的轨道振动表现为钢轨相对道床板的弯曲和道床板自身的弯曲及扭转振动;轨道垂向动力特性在500 Hz以内受单个轮对作用的接触刚度和质量效应影响显著,而在钢轨一阶垂向pinned-pinned共振频率之后受柔性轮对与接触刚度的耦合作用影响甚微;考虑双轮对加载后,转向架双轮对间钢轨会出现局部弯曲振动特征;轨道垂向动力特性在车轮一阶弯曲、车轮二阶弯曲和车轮伞向模态影响下出现谐波峰值。

Abstract

The floating fastener is a type of resilient fasteners with very low vertical stiffness. However, short-pitch rail corrugation occurs on tracks with the floating fasteners on China metro lines, resulting in large vehicle interior vibration noise. To investigate the dynamic characteristics of the track, a three-dimensional finite element model of the track is established using the finite element software ABAQUS. The modal analysis and harmonic response analysis are conducted to investigate the dynamic characteristics of the track loaded by flexible wheelsets. The results show that: The wave reflection effect caused by the simplified truncated boundary of a periodically discrete supported track on the dynamic characteristics of the track is significant when the length of track in the numerical model is not enough. The effect of the boundary wave reflections can be ignored when the length of track model in the frequencies of below 1500 Hz is more than 80 sleeper spacings. In the frequencies of 10–80 Hz, the vibration modes of the track structure are bending and torsional vibrations of rail and slab as a whole. However, at above 80 Hz, the rail vibrates relative to the slab which also shows a bending vibration. The vertical dynamic characteristics of track at below 500 Hz are significantly influenced by the wheel–rail contact stiffness and the wheelset mass. But they are not influenced by the contact stiffness and the wheelset mass when the frequency is large than the first-order vertical pinned-pinned resonance frequency of the rail. The rail will show local bending vibration characteristics if double wheelsets of the bogie are considered. Harmonic peaks appear of the vertical dynamic characteristics of track under the influence of the first-order bending, second-order bending and umbrella modes of the wheel.

关键词

地铁轨道 / 浮轨式扣件 / 有限元法 / 模态分析 / 柔性轮对 / 轮轨耦合作用

Key words

metro tracks / floating fasteners / finite element method / modal analysis / flexible wheelsets / wheel–rail interaction

引用本文

导出引用
姚学东,李伟,周志军,温泽峰. 柔性轮对作用下浮轨式扣件轨道动力特性分析[J]. 振动与冲击, 2023, 42(24): 42-50
YAO Xuedong,LI Wei,ZHOU Zhijun,WEN Zefeng. Analysis on dynamic characteristics of track with floating fasteners considering loading of flexible wheelsets[J]. Journal of Vibration and Shock, 2023, 42(24): 42-50

参考文献

[1] Li W, Zhou Z, Zhao X, et al. Formation mechanism of short-pitch rail corrugation on metro tangent tracks with resilient fasteners[J]. Vehicle System Dynamics, 2022: 1-22. DOI:10.1080/00423114.2022.2086143.
[2] 李伟. 地铁钢轨波磨成因及其对车辆/轨道行为的影响[D]. 成都:西南交通大学,2015.
LI Wei. Study on root cause of metro rail corrugation and its influence on behavior of vehicle-track system[D]. Chengdu: Southwest Jiaotong University, 2015.
[3] Li S, Li Z, Núñez A, et al. New insights into the short pitch corrugation enigma based on 3D-FE coupled dynamic vehicle-track modeling of frictional rolling contact[J]. Applied Sciences, 2017, 7(8): 807.
[4] Zhang P, Li S, Núñez A, et al. Multimodal dispersive waves in a free rail: Numerical modeling and experimental investigation[J]. Mechanical Systems and Signal Processing, 2021, 150: 107305.
[5] WU T X. Effects on short pitch rail corrugation growth of a rail vibration absorber/damper[J]. Wear, 2011, 271(1-2): 339-348.
[6] 李伟,杜星,王衡禹,等. 地铁钢轨一种波磨机理的调查分析[J]. 机械工程学报,2013,49(16):26-32.
LI Wei, DU Xing, WANG Hengyu, et al. Investigation into the mechanism of type of rail corrugation of metro[J]. Journal of Mechanical Engineering, 2013, 49(16):26-32.
[7] Wu T X, Thompson D J. An investigation into rail corrugation due to micro-slip under multiple wheel/rail interactions[J]. Wear, 2005, 258(7-8): 1115-1125.
[8] TASSILLY E, VINCENT N. A linear model for the corrugation of rails[J]. Journal of Sound and Vibration, 1991, 150(1): 25-45.
[9] FANG G, WANG Y, PENG Z, et al. Theoretical investigation into the formation mechanism and mitigation measures of short pitch rail corrugation in resilient tracks of metros[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(9): 2260-2271.
[10] Cui X L, Chen G X, Yang H G, et al. Study on rail corrugation of a metro tangential track with Cologne-egg type fasteners[J]. Vehicle System Dynamics, 2016, 54(3): 353-369.
[11] Grassie S L, Kalousek J. Rail corrugation: characteristics, causes and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1993, 207(1): 57-68.
[12] Ma C, Gao L, Xin T, et al. The dynamic resonance under multiple flexible wheelset-rail interactions and its influence on rail corrugation for high-speed railway[J]. Journal of Sound and Vibration, 2021, 498: 115968.
[13] 刘孟奇,陶功权,肖国放,等. 中高频激励下轮轨不同建模方法对轮轨动态相互作用的影响[J]. 振动与冲击,2021,40(10):150-158.
LIU Mengqi, TAO Gongquan, XIAO Guofang, et al. Influence of wheelset and track modelling approaches on wheel-rail dynamic interaction under the excitation of medium-high frequency[J]. Journal of Vibration and Shock, 2021, 40(10): 150-158.
[14] 魏伟,翟婉明. 轮轨系统高频振动响应[J]. 铁道学报,1999,21(2):42-45.
WEI Wei, ZHAI Wanming. Dynamic response of wheel/rail system to high-frequency excitation[J]. Journal of the China Railway Society, 1999, 21(2): 42-45.
[15] 关庆华,周业明,李伟,等. 车辆轨道系统的P2共振频率研究[J]. 机械工程学报,2019,55(8):118-127.
GUAN Qinghua, ZHOU Yeming, LI Wei, et al. Study on the P2 resonance frequency of vehicle track system[J]. Journal of Mechanical Engineering, 2019, 55(8): 118-127.
[16] Avitabile P. Modal testing: a practitioner's guide[M]. John Wiley & Sons, 2017.
[17] 魏伟. 轨道系统导纳分析模型[J]. 大连交通大学学报,1998,19(4):33-38+44.
WEI Wei. Admittance analysis model of track system[J]. Journal of Dalian Jiaotong University, 1998, 19(4): 33-38+44.
[18] 于淼. 高速铁路轨道-车辆系统高频瞬态仿真及波磨机理研究[D]. 北京:中国铁道科学研究院,2019.
YU Miao. Transient simulation for high-speed track/vehicle system and study on rail corrugation[D]. Beijing: China Academy of Railway Sciences, 2019.
[19] 马超智,高亮,曾钦娥,等. 高速铁路轮轨耦合振动模态特征及其影响因素研究[J]. 铁道学报,2021,43(12):85-93.
MA Chaozhi, GAO Liang, Zeng Qine, et al. Study on modal characteristics and influencing factors of wheel-rail coupling vibration of high-speed railway. Journal of the China Railway Society, 2021, 43(12): 85-93.

PDF(2944 KB)

383

Accesses

0

Citation

Detail

段落导航
相关文章

/