钢纤维地质聚合物混凝土冲击力学性能研究

叶建峰,刘宪成,颜桂云,黄冠骅,庄金平

振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 1-11.

PDF(5692 KB)
PDF(5692 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 1-11.
论文

钢纤维地质聚合物混凝土冲击力学性能研究

  • 叶建峰,刘宪成,颜桂云,黄冠骅,庄金平
作者信息 +

Impact mechanical properties of steel fiber geopolymer concrete

  • YE Jianfeng, LIU Xiancheng, YAN Guiyun, HUANG Guanhua, ZHUANG Jinping
Author information +
文章历史 +

摘要

通过控制粉煤灰、矿渣用量制备基准强度分别为C50、C60和C70的普通地质聚合物混凝土试件,再掺入不同体积量(0.3%, 0.6%, 0.9% 和1.2%) 的钢纤维制备出钢纤维地质聚合物混凝土试件。采用霍普金森压杆(split Hopkinson pressure bar,SHPB)对试件在不同冲击气压(对应不同应变率)下的抗冲击性能进行研究,探讨钢纤维掺量、应变率及混凝土基准强度对试件动态抗压强度和韧性指数的影响;采用ABAQUS进行数值模拟,对模拟与试验结果加以分析和验证;建立钢纤维地质聚合物混凝土动态应力-应变本构模型。结果表明:各组试件的动态抗压强度随着应变率、混凝土基准强度的提高逐渐增大,而钢纤维掺量仅对强度较低地质聚合物混凝土产生较大影响;应变率的提高使试件完整性逐渐变差,而随着钢纤维掺量与混凝土基准强度的提高,试件完整性逐渐变好,冲击耗能与韧性逐渐增加;数值分析与试验结果吻合较好,验证了结果的可靠性;钢纤维地质聚合物混凝土动态应力-应变本构模型计算结果与试验结果整体吻合较,可用于预测冲击荷载下钢纤维地质聚合物混凝土的力学性能。

Abstract

Ordinary geopolymer concrete were used to prepare steel fiber geopolymer concrete(SFGC) by adding different steel fiber volume content(0.3%, 0.6%, 0.9% and 1.2%), with benchmark strength of C50, C60 and C70 by controlling the content of fly ash and slag. The impact mechanical properties of SFGC under different impact pressures (corresponding to different strain rates) were studied by Using Hopkinson pressure bar (SHPB) apparatus and the effect of steel fiber content, strain rate as well as concrete benchmark strength on dynamic compressive strength and toughness behavior of specimens was discussed. Numerical study was performed with ABAQUS and the results were analyzed and verified to establish the dynamic stress-strain constitutive model of SFGC. The results showed that the dynamic compressive strength increased gradually with the increase of strain rate and concrete benchmark strength, while the steel fiber content had significant effect on the SFGC with relatively low strength. Meanwhile, the integrity of SFGC decreased with the increase of steel fiber content but increased with the increase of concrete benchmark, and the impact energy consumption and toughness increased gradually as well. The numerical results agreed well with the test results, verifying the reliability of numerical study and proposed constitutive model. Moreover, the calculation results from dynamic stress-strain constitutive model of SFGC agreed well with the experimental results and it could be used to predict the mechanical behavior of SFGC under impact loading. 

关键词

钢纤维 / 地质聚合物混凝土 / 动态抗压强度 / 韧性指数 / 有限元分析 / 应力-应变本构模型

Key words

steel fiber / geopolymer concrete / dynamic compressive strength / toughness index / finite element analysis / stress-strain constitutive model

引用本文

导出引用
叶建峰,刘宪成,颜桂云,黄冠骅,庄金平. 钢纤维地质聚合物混凝土冲击力学性能研究[J]. 振动与冲击, 2023, 42(3): 1-11
YE Jianfeng, LIU Xiancheng, YAN Guiyun, HUANG Guanhua, ZHUANG Jinping. Impact mechanical properties of steel fiber geopolymer concrete[J]. Journal of Vibration and Shock, 2023, 42(3): 1-11

参考文献

[1] AMPOL W, APINUN S, PEEM N, et al. Use of recycled aggregates in pressed fly ash geopolymer concrete [J]. Environmental Progress & Sustainable Energy, 2020, 39(2): e13327.
[2] FARHAN K Z, JOHARI M, DEMIRBOA R. Impact of fiber reinforcements on properties of geopolymer composites: A review [J]. Journal of Building Engineering, 2021, 44(11): 102628.
[3] 范飞林, 许金余, 李为民, 等. 矿渣-粉煤灰基地质聚合物混凝土的冲击力学性能[J]. 爆炸与冲击, 2009, 29(05): 516-522.
FAN Feilin, XU Jinyu, LI Weimin, et al. Impact mechanical properties of slag-fly ash-based geopolymer concrete [J]. Explosion and shock waves, 2009, 29(05): 516-522.
[4] 尹明, 白洪涛, 周吕. 粉煤灰地质聚合物混凝土的强度特性[J]. 硅酸盐通报, 2014, 33(10): 2723-2727.
YIN Ming, BAI Hongtao, ZHOU Lv. Strength characteristics of fly ash geopolymeric concrete [J]. Bulletin of the Chinese Ceramic Society, 2014, 33(10): 2723–2727.
[5] 鲁强, 郑汝海. 玄武岩纤维增强地质聚合物混凝土的冲击压缩试验研究[J]. 施工技术, 2008, 37(S2): 54-57.
LU Qiang, ZHENG Ruhai. Impact compression experiment of basalt fiber reinforced geopolymeric concrete [J]. Construction technology, 2008, 37(S2): 54-57.
[6] 杨健辉, 李潇雅, 叶亚齐, 等. 全轻纤维混凝土的SHPB冲击强度与耗能效应[J]. 振动与冲击, 2020, 39(2): 148-153.
YANG Jianhui, LI Xiaoya, YE Yaqi, et al. Strength and energy dissipation effect of fiber reinforced all-lightweight concrete based on SHPB impact tests [J]. Vibration and impact, 2020, 39(2): 148-153.
[7] 王志坤, 许金余, 范建设, 等. 温度、应变率对地质聚合物混凝土抗压强度的影响[J]. 振动与冲击, 2014, 33(17): 197-202.
WANG Zhikun, XU Jinyu, FAN Jianshe, et al. Effects of temperature and strain rate on compressive strength of geopolymeric concrete [J]. Journal of Vibration and Shock, 2014, 33(17): 197-202.
[8] 陶鑫, 谢子令, 郝圣旺, 等. 钢纤维增强粉煤灰地质聚合物单轴受压过程的声发射特性[J]. 复合材料学报, 2014, 31(6): 1467-1475.
TAO Xin, XIE Ziling, HAO Shengwang, et al. Acoustic emission behavior of steel fiber reinforced fly ash geopolymer under uniaxial compression [J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1467-1475.
[9] 罗立峰. 钢纤维增强聚合物改性混凝土的冲击性能[J]. 中国公路学报, 2006, 19(5): 71-76.
LUO Lifeng. Steel fiber reinforced polymer modified concrete impact behaviors[J]. China Journal of Highway and Transport, 2006, 19(5): 71-76.
[10] 潘慧敏, 马云朝. 钢纤维混凝土抗冲击性能及其阻裂增韧机理[J]. 建筑材料学报,2017, 20(06): 956-961.
PAN Huimin, MA Yunchao. Impact resistance of steel fiber reinforced concrete and its mechanism of crack resistance and toughening[J]. Journal of Building Materials, 2017, 20(06): 956-961.
[11] 孟益平, 胡时胜. 混凝土材料冲击压缩试验中的一些问题[J]. 实验力学, 2003(1): 108-112.
MENG Yiping, HU Shisheng. Some problems in the test of concrete under impact compressive loading [J].Journal of Experimental Mechanics, 2003(1): 108-112.
[12] 李新忠, 魏雪英, 赵均海. 混凝土力学性能的应变率效应[J]. 长安大学学报(自然科学版), 2012, 32(2): 82-86.
LI Xinzhong, WEI Xueying, ZHAO Junhai. StrainRate Effect on Mechanical Properties of Concrete [J]. Journal of Chang'an University : Natural Science Edition, 2012, 32(2): 82-86.
[13] ZHANG H, WANG L, ZHENG K, et al. Research on compressive impact dynamic behavior and constitutive model of polypropylene fiber reinforced concrete [J]. Construction and Building Materials, 2018, 187: 584-595.
[14] 卢芳云, 霍普金森杆实验技术[M]. 中国: 科学出版社, 2013.
LU Fangyun, Hopkinson Bar Experimental Technology [M]. China: Science Press, 2013.
[15] 王勇. 混凝土类材料在霍普金森杆实验中的受力状态研究[D]. 北京:北京理工大学, 2015.
WANG Yong. Study the stress state of concrete-like materials in SHPB experiment test [D]. Beijing: Beijing Institute of Technology, 2015.
[16] 过镇海. 混凝土的强度和本构关系——原理与应用[M].北京: 中国建筑工业出版社, 2004.
GUO Zhenhai. Strength and Constitutive Model of Concrete—Principle and Application [M]. Beijing: China Architecture&Building Press, 2004.

PDF(5692 KB)

625

Accesses

0

Citation

Detail

段落导航
相关文章

/