高聚物胶凝戈壁土的动模量及阻尼比试验研究

杨海华1,2,3,刘亮1,2,3,刘汉龙1,2,3,4,高鹏展1,陈育民2,3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 12-20.

PDF(2954 KB)
PDF(2954 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 12-20.
论文

高聚物胶凝戈壁土的动模量及阻尼比试验研究

  • 杨海华1,2,3,刘亮1,2,3,刘汉龙1,2,3,4,高鹏展1,陈育民2,3
作者信息 +

Tests for dynamic modulus and damping ratio of high polymer cementitious Gobi soil

  • YANG Haihua1,2,3, LIU Liang1,2,3, LIU Hanlong1,2,3,4, GAO Pengzhan1, CHEN Yumin2,3
Author information +
文章历史 +

摘要

高聚物胶凝戈壁土是将高聚物掺入戈壁土中,可有效提高原状戈壁土的基本性质。采用中型动三轴试验研究了在不同高聚物质量比、围压、固结比、加载频率工况下高聚物胶凝戈壁土的动弹性模量和阻尼比变化规律。结果表明:高聚物质量比Rp对动弹性模量和阻尼比影响较大,在动应力比(cyclic stress ratio,CSR)为0.157时,动弹性模量随Rp增大呈线性增长;CSR大于0.157后随Rp增大动弹性模量先增大后减小,在Rp为3%时出现峰值;在相同CSR下,天然戈壁土在振动荷载下产生残余应变比高聚物胶凝戈壁土大,Rp为3%时经过5次振动后的残余应变仅为天然戈壁土的18.4%;阻尼比随Rp的增大略有降低。基于沈珠江动力模型,建立了考虑高聚物质量比影响的修正模型,并通过试验验证了修正模型的适用性。研究成果可为高聚物戈壁土的动力分析和工程应用提供理论依据。

Abstract

High polymer cementitious Gobi soil is that high polymer is mixed into Gobi soil, which can effectively improve the basic properties of undisturbed Gobi soil. The dynamic elastic modulus and damping ratio of polymer cemented Gobi soil under different polymer mass ratio, confining pressure, consolidation ratio and loading frequency were studied by medium-sized dynamic triaxial test. The results show that the polymer mass ratio Rp has a great influence on the dynamic elastic modulus and damping ratio. When the cyclic stress ratio is 0.157, the dynamic elastic modulus increases linearly with the increase of Rp; When CSR is greater than 0.157, the dynamic elastic modulus first increases and then decreases with the increase of Rp, and the peak value appears when Rp is 3%; Under the same CSR, the residual strain of natural Gobi soil under vibration load is larger than that of high polymer cemented Gobi soil. When Rp is 3%, the residual strain after five vibrations is only 18.4% of that of natural Gobi soil; The damping ratio decreases slightly with the increase of Rp. Based on Shen Zhujiang dynamic model, a modified model considering the influence of polymer mass ratio is established, and the applicability of the modified model is verified by experiments. The research results can provide a theoretical basis for the dynamic analysis and engineering application of high polymer Gobi soil.

关键词

高聚物胶凝戈壁土 / 动三轴试验 / 动弹性模量 / 阻尼比 / 滞回圈 / 动力模型

Key words

High polymer cementitious Gobi soil / Dynamic triaxial test / Dynamic elastic modulus / Damping ratio / Hysteresis loops / Dynamic model

引用本文

导出引用
杨海华1,2,3,刘亮1,2,3,刘汉龙1,2,3,4,高鹏展1,陈育民2,3. 高聚物胶凝戈壁土的动模量及阻尼比试验研究[J]. 振动与冲击, 2023, 42(3): 12-20
YANG Haihua1,2,3, LIU Liang1,2,3, LIU Hanlong1,2,3,4, GAO Pengzhan1, CHEN Yumin2,3. Tests for dynamic modulus and damping ratio of high polymer cementitious Gobi soil[J]. Journal of Vibration and Shock, 2023, 42(3): 12-20

参考文献

[1] 杨斌, 赖国泉, 杨有海, 等. 铁路路基戈壁土填料级配及压实特性分析[J]. 中国铁道科学, 2011, 32(01): 7-11.
YANG Bin, LAI Guoquan, YANG Youhai, et al. Analysis on the Grading and the Compaction Characteristics of the Gobi Soil Filling for Railway Subgrade[J]. China Railway Science. 2011, 32(01): 7-11.
[2] 洪小星, 陈国兴, 孙田, 等. 砂砾土动力特性的室内试验研究进展[J]. 世界地震工程, 2011, 27(01): 47-53.
HONG Xiaoxing, CHEN Guoxing, SUN Tian, et al. Research progress of labrotory tests on the dynamic characteristics of gravel soil[J]. World Earthquake Engineering, 2011, 27(01): 47-53.
[3] 侯天顺, 崔奕翔. EPS颗粒混合轻量土的动变形特性及修正Hardin-Drnevich模型研究[J]. 岩土工程学报, 2021, 43(09): 1602-1611.
HOU Tian-shun, CUI Yi-xiang. Dynamic deformation characteristics and modified Hardin-Drnevich model for light weight soil mixed with EPS particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(09): 1602-1611.
[4] Hamidi A, Hooresfand M. Effect of fiber reinforcement on triaxial shear behavior of cement treated sand[J]. Geotextiles and Geomembranes, 2013, 36: 1-9.
[5] 傅明源, 孙酣经. 聚氨酯弹性体及其应用(第三版)[M]. 北京:化学工业出版社, 2005.
[6] 袁晓铭,曹振中,孙锐,等.汶川8.0级地震液化特征初步研究[J].岩石力学与工程学报,2009,28(6):1288-1296.
YUAN Xiaoming, CAO Zhenzhong, SUN Rui, et al. Preliminary research on liquefaction characteristics of wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28( 6): 1288-1296.
[7] Schlosser F, Long N T. Recent results in French on reinforced earth[J].Journal of the Construction Division, ASCE, 1974, 100(3): 223-237.
[8] Maher M H, Woods R D. Dynamic response of sand reinforced with randomly distributed fibers[J].Journal of Geotechnical Engineering, ASCE, 1990, 116(7): 1116-1131.
[9] Li J,Ding D W. Nonlinear elastic behavior of fiber-reinforced soil under cyclic loading[J]. Soil Dynamics and Earehquake Engineering, 2002, 22(9-12): 977-983.
[10] 杨贵. 高土石坝筑坝料动力特性试验与地震反应分析[D]. 南京: 河海大学, 2009.
[11] Shewbridge S E, Sousa J B. Dynamic properties of reinforced sand[J]. Journal of Geotechnical Engineering, ASCE, 1991, 117(9): 1402-1422.
[12] Chauhan M S, Mittal S, Mohanty B. Performance evaluation of silty sand subgrade reinforced with fly ash and fibre[J]. Geotextiles and Geomembranes, 2008, 26(5): 429-435.
[13] 刘汉龙, 林永亮, 凌华, 等. 加筋堆石料的动残余变形特性试验研究[J]. 岩土工程学报, 2010,32(9): 1418-1421.
LIU Hanlong, LIN Yongliang, LING Hua, et al. Residual deformation behaviors of reinforced rock-fill materials[J]. Chinese Journal of Geotechnical Engineering, 2010,32(9): 1418-1421.
[14] 傅华, 陈生水, 韩华强, 等. 胶凝砂砾石料静、动力三轴剪切试验研究[J]. 岩土工程学报, 2015, 37(2): 357-362.
FU Hua, CHEN Shengshui, HAN Huaqiang, et al. Experimental study on static and dynamic properties of cemented sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 357-362.
[15] 庄海洋, 刘启菲, 吴琪, 等. 饱和橡胶颗粒-砂混合料的动力学特性[J]. 建筑材料学报, 2021, 24(03): 597-605.
ZHUANG Haiyang, LIU Qifei, WU Qi, et al. Dynamic Behavior of Saturated Rubber Particle-Sand Mixture[J]. Journal of Building Materials, 2021,24(03):597-605.
[16] 李雪菊, 潘旦光. 砂-锯末混合模型土的动力特性试验研究[J]. 地震工程学报, 2021, 43(3): 737-742.
LI Xueju, PAN Danguang. Experimental Study of Dynamic Characteristics of Modal Soil Mixed with Sand and Sawdust[J]. China Earthguake Engineering Journal, 2021, 43(3): 737-742.
[17] 陆晓炎. 前期加载振动对堆石料动力变形特性的影响[D]. 大连: 大连理工大学, 2020.
[18] 韩华强, 陈生水, 傅华, 等. 先期振动对筑坝材料变形特性的影响[J]. 岩土工程学报, 2015, 37(2): 263-268.
HAN Huaqiang, CHEN Shengshui, FU Hua, et al. Effect of previous cyclic loading on deformation characteristics of dam materials [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 263-268.
[19] 刘洋.土动力学基本原理[M].北京:清华大学出版社,2019.
[20] 邱成春,张孟喜.水平-竖向加筋饱和砂土动弹性模量试验研究[J]. 岩土力学, 2012, 33(6): 1667-1672,1702.
QIU Chengchun, ZHANG Mengxi. Test research on dynamic elastic modulus of saturated sand reinforced with horizontal-vertical inclusions[J]. Rock and Soil Mechanics, 2012, 33(6): 1667-1672,1702.
[21] 袁晓铭, 孙静. 非等向固结下砂土最大动剪切模量增长模式及Hardin公式修正[J].岩土工程学报,2005,27(3):264-269.
YUAN Xiaoming, SUN Jing. Model of maximum dynamic shear modulus of sand under anisotropic consolidation and revision of Hardin’s formula[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 264–269.
[22] 郭熙灵. 大型扭剪仪在粗粒材料研究中的应用[J]. 长江科学院院报, 1994, 11(2): 67-74, 80.
GUO Xiling. Application of Large Scale Torsional Shear Apparatus on Coarse Aggregate Research [J]. Journal of Yangtze River Scientific Research Institute, 1994, 11(2): 67-74, 80.
[23] FIGUEROA J L,SAADA A S,LIANG L,et al.Evaluation of soil liquefaction by energy principles[J].Journal of Geotechni- cal Engineering,1994,120(9):1554-1569.
[24] Hardin B O, Drnevich V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1972,98(SM7): 667-692.
[25] 沈珠江, 徐刚. 堆石料的动力变形特性[J]. 水利水运科学研究, 1996(02): 143-150.
SHEN Zhujiang, XU Gang. Deformation Behavior of Rock Materials under Cyclic Loading[J]. Journal of Nanjing Hydraulic Research Institute, 1996(02): 143-150..

PDF(2954 KB)

367

Accesses

0

Citation

Detail

段落导航
相关文章

/