双模式变间隙磁流变阻尼器研究

董小闵,邓雄,王陶,李鑫,晏茂森

振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 129-138.

PDF(3466 KB)
PDF(3466 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 129-138.
论文

双模式变间隙磁流变阻尼器研究

  • 董小闵,邓雄,王陶,李鑫,晏茂森
作者信息 +

Dual-mode variable clearance MR damper

  • DONG Xiaomin, DENG Xiong, WANG Tao, LI Xin, YAN Maosen
Author information +
文章历史 +

摘要

直升机飞行过程中座椅系统主要处于隔振工况,阻尼器隔振行程小且持续输出较小的阻尼力,而直升机遇突发状况坠机时属于抗坠毁工况,阻尼器需在缓冲行程内保持力值平衡,且提供大阻尼大行程。针对隔振和抗坠毁双模式工况对阻尼器设计要求存在矛盾的问题,提出了一种能同时满足直升机座椅隔振和抗坠毁的双模式变间隙磁流变阻尼器(magnetorheological damper,MRD)结构。为验证结构的有效性,建立了变间隙磁流变阻尼器的力学模型,并在不同乘员重量、不同冲击速度下对变间隙磁流变阻尼器进行拓扑形面优化;基于拓扑形面优化结果,完成了变间隙磁流变阻尼器样机的加工、装配和测试。数值仿真和双模式特性试验表明,变间隙磁流变阻尼器的抗坠毁单元能在所选冲击工况下均能输出平稳、稳定可控的库伦阻尼力,同时其隔振单元具有良好的动态范围,最大阻尼力和动态范围均满足设计要求。

Abstract

The helicopter seat is mainly in the vibration isolation condition, the stroke of damper is small, and the small damping force is continuously output. When helicopter crashes in an emergency, the damper needs to maintain a balance of force within the buffer stroke and provide large damping and large stroke. Considering the contradiction of damper design requirements under dual-mode working conditions of vibration isolation and anti-crash, a dual-mode magnetorheological damper (MRD)  with variable damping gap is proposed, which can meet the requirements of helicopter seat vibration isolation and anti-crash at the same time. To verify the effectiveness of the proposed structure, the mechanical model of damper is established, and the topology is optimized. Based on the optimization results, the prototype of MRD is manufactured and tested. The results show that Coulomb force of MRD under selected shock conditions is stable and controllable, and its vibration isolation unit has a good dynamic range. Both the maximum damping force and the dynamic range meet the design requirements.

关键词

直升机座椅 / 磁流变阻尼器 / 隔振 / 抗坠毁 / 拓扑优化

Key words

Helicopter seat / MR damper / Vibration isolation / Crashworthiness / Topological optimization

引用本文

导出引用
董小闵,邓雄,王陶,李鑫,晏茂森. 双模式变间隙磁流变阻尼器研究[J]. 振动与冲击, 2023, 42(3): 129-138
DONG Xiaomin, DENG Xiong, WANG Tao, LI Xin, YAN Maosen. Dual-mode variable clearance MR damper[J]. Journal of Vibration and Shock, 2023, 42(3): 129-138

参考文献

[1] 何才富. 直升机抗坠毀座椅舒适性分析[J]. 直升机技术, 2003(02): 31-34.
HE Caifu. The comfortable analysis of the helicopter crashworthy seat[J]. Helicopter Technique, 2003(02): 31-34.
[2] Astori P, Zanella M, Bernardini M. Validation of Numerical Models of a Rotorcraft Crashworthy Seat and Subfloor[J]. Aerospace, 2020, 7(12).
[3] Galehdari S A, Khodarahmi H. Design and analysis of a graded honeycomb shock absorber for a helicopter seat during a crash condition[J]. International Journal Of Crashworthiness, 2016, 21(3): 231-241.
[4] Chen Y, Wickramasinghe V, Zimcik D. Development and evaluation of hybrid seat cushions for helicopter aircrew vibration mitigation[J]. Journal Of Intelligent Material Systems And Structures, 2015, 26(13): 1633-1645.
[5] Jiang R, Rui X, Yang F, et al. Simulation and experiment of the magnetorheological seat suspension with a seated occupant in both shock and vibration occasions[J]. Smart Materials and Structures, 2020, 29(10).
[6] Tharehalli Mata G, Mokenapalli V, Krishna H. Performance analysis of MR damper based semi-active suspension system using optimally tuned controllers[J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal Of Automobile Engineering, 2021, 235(10-11): 2871-2884.
[7] Jiang R L, Rui X T, Yang F F, et al. Simulation and experiment of the magnetorheological seat suspension with a seated occupant in both shock and vibration occasions[J]. Smart Materials And Structures, 2020, 29(10).
[8] 董小闵, 丁飞耀, 管治, 等. 面向高速的磁流变缓冲器多目标优化设计及性能研究[J]. 机械工程学报, 2014, 50(05): 127-134.
DONG Xiaomin, DING Feiyao, GUAN Zhi, et al. Multi-objective optimization and performance research of magneto-rheological absorber under high speed[J]. Journal of Mechanical Engineering, 2014, 50(05): 127-134.
[9] Woo D, Choi S-B, Choi Y T, et al. Frontal crash mitigation using MR impact damper for controllable bumper[J]. Journal Of Intelligent Material Systems And Structures, 2007, 18(12): 1211-1215.
[10] Archakam P K, Muthuswamy S. Design and Simulation of a Crash Energy Absorption System Integrated with Magneto-Rheological Absorber[J]. Journal Of Vibration Engineering & Technologies, 2021.
[11] Han C, Kim B-G, Kang B-H, et al. Effects of magnetic core parameters on landing stability and efficiency of magnetorheological damper-based landing gear system[J]. Journal Of Intelligent Material Systems And Structures, 2020, 31(2): 198-208.
[12] Yoon J-Y, Kang B-H, Kim J-H, et al. New control logic based on mechanical energy conservation for aircraft landing gear system with magnetorheological dampers[J]. Smart Materials And Structures, 2020, 29(8).
[13] Han C, Kang B H, Choi S B, et al. Control of Landing Efficiency of an Aircraft Landing Gear System With Magnetorheological Dampers[J]. Journal Of Aircraft, 2019, 56(5): 1980-1986.
[14] Singh H J, Wereley N M, Asme. Optimized biodynamic shock attenuation performance using an adaptive seat suspension[C]. 4th Annual Meeting of the ASME/AIAA Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS), 2011: 387-395.
[15] Singh H J, Hu W, Wereley N M, et al. Experimental validation of a magnetorheological energy absorber design optimized for shock and impact loads[J]. Smart Materials And Structures, 2014, 23(12).
[16] Hiemenz G J, Choi Y T, Wereley N M. Semi-active control of vertical stroking helicopter crew seat for enhanced crashworthiness[J]. Journal Of Aircraft, 2007, 44(3): 1031-1034.
[17] Wereley N M, Choi Y T, Singh H J. Adaptive energy absorbers for drop-induced shock mitigation[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(6): 515-519.
[18] Wang M K, Chen Z B, Wereley N M. Adaptive magnetorheological energy absorber control method for drop-induced shock mitigation[J]. Journal Of Intelligent Material Systems And Structures, 2021, 32(4): 449-461.
[19] Murugan M, Yoo J, Hiemenz G, et al. Analytical evaluation of adaptive seat energy absorber for rotorcraft semi-active crash safety seat development[C]. ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2013.
[20] Singh H J, Wereley N M. Influence of occupant compliance on a vertically stroking helicopter crew seat suspension[J]. Journal Of Aircraft, 2015, 52(4): 1286-1297.
[21] Hiemenz G J, Hu W, Wereley N M. Semi-active magnetorheological helicopter crew seat suspension for vibration isolation[J]. Journal of Aircraft, 2008, 45(3): 945-953.
[22] 王迪. 面向直升机座椅系统的磁流变阻尼器半主动隔振问题研究[D]. 哈尔滨工业大学, 2014.
WANG Di. Research on magnetorheological damper semi-active vibration isolation oriented to helicopter seating system[D]. Harbin Institute of Technology, 2014.
[23] Mao M, Hu W, Choi Y T, et al. Experimental validation of a magnetorheological energy absorber design analysis[J]. Journal Of Intelligent Material Systems And Structures, 2014, 25(3): 352-363.
[24] Spurk J H, Aksel N. Fluid Mechanics. 2nd Edition[M]. Berlin: Springer-Verlag, 2008.
[25] Franzini J B, Daugherty R L, Finnemore E J. Fluid mechanics with engineering applications[M]. New York: McGraw-Hill, 1997.
[26] Powell L a A, Choi Y T, Hu W, et al. Nonlinear modeling of adaptive magnetorheological landing gear dampers under impact conditions[J]. Smart Materials And Structures, 2016, 25(11).
[27] 贾永枢, 周孔亢. 车用磁流变液流变特性分析及试验[J]. 机械工程学报, 2009, 45(06): 246-250.
JIA Yongshu, ZHOU Kongkang. Rheological properties analysis and experiment of magnetorheological fluid for automobile[J]. Journal of Mechanical Engineering, 2009, 45(06): 246-250.
[28] Balajewicz M J, Dowell E H, Noack B R. Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier-Stokes equation[J]. Journal of Fluid Mechanics, 2013, 729: 285-308.
[29] 鞠锐, 廖昌荣, 周治江, 等. 单筒充气型轿车磁流变液减振器研究[J]. 振动与冲击, 2014, 33(19): 86-92.
JU Rui, LIAO Changrong,ZHOU Zhijiang, et al. Car MR fluid shock absorber with mono-tube and charged-gas bag[J]. Journal of Vibration and Shock, 2014, 33(19): 86-92.
[30] 董小闵, 王陶, 王羚杰, 等 旋转式磁流变螺旋流动阻尼器扭矩增强研究[J]. 湖南大学学报(自然科学版), 2021, 48(10): 39-47.
DONG Xiaomin, WANG Tao, WANG Lingjie, et al. Research on torque enhancement of rotary magnetorheological damper based on helical flow[J]. Journal of Hunan University (Natural Sciences), 2021, 48(10): 39-47.
[31] 高云凯, 段少东. 基于NSGA-Ⅱ算法的客车底架的离散拓扑优化[J]. 同济大学学报(自然科学版), 2017, 45(11): 1664-1669.
GAO Yunkai, DUAN Shaodong. Discrete topology optimization of bus chassis frame based on NSGA-Ⅱ[J]. Journal of Tongji University (Natural Science), 2017, 45(11): 1664-1669.
[32] Xi J, Dong X, Li W, et al. A novel passive adaptive magnetorheological energy absorber[J]. Smart Material Structures, 2021, 30: 014001.
[33] Hiemenz G J, Choi Y T, Wereley N M. Semi-active control of vertical stroking helicopter crew seat for enhanced crashworthiness[J]. Journal of Aircraft, 2007, 44(3): 1031-1034.

PDF(3466 KB)

Accesses

Citation

Detail

段落导航
相关文章

/