不同流场下含内流立管涡激振动响应特性及Coriolis力效应研究

李星辉1,2,袁昱超1,2,薛鸿祥1,2,唐文勇1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 165-173.

PDF(3099 KB)
PDF(3099 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 165-173.
论文

不同流场下含内流立管涡激振动响应特性及Coriolis力效应研究

  • 李星辉1,2,袁昱超1,2,薛鸿祥1,2,唐文勇1,2
作者信息 +

Vortex-induced vibration response characteristics and Coriolis force effect of  riser with internal flow under different flow fields

  • LI Xinghui1,2, YUAN Yuchao1,2, XUE Hongxiang1,2, TANG Wenyong1,2
Author information +
文章历史 +

摘要

细长结构物在海洋来流作用下会发生涡激振动(vortex-induced vibration,VIV),涡激振动是海洋立管疲劳损伤的主要诱因之一。立管实际工作过程中内部输送油气,产生惯性力、科氏力(Coriolis力)和离心力,使得立管的动力响应变得更为复杂。基于含内流立管涡激振动响应时域预报模型,分别计算了在均匀流和剪切流下含内流立管涡激振动响应,并分析了机理较为复杂的科氏力作用。结果表明:均匀外流下内流会降低立管的固有频率,增大响应幅值;剪切外流下内流会激发出更高阶的模态响应。均匀外流下,科氏力在一定区域内固定做正功或负功,分别引起均方根位移的增大或减小;剪切外流下,科氏力使得立管顶部区域均方根位移升高,中部区域均方根位移降低。内流速度越大,科氏力效应越显著。

Abstract

Vortex-induced vibration (VIV) occurs in slender structures under the action of ocean currents, which is one of the main causes of fatigue damage of marine risers. The riser is filled with oil and gas during operation, and the internal flow will generate inertial force, Coriolis force and centrifugal force, which makes the dynamic response of the riser more complicated. Based on a time-domain prediction model of VIV response of the riser with internal flow, VIV response of the riser with internal flow under uniform and shear currents are calculated. The Coriolis force with complicated mechanism is analyzed. Internal flow reduces natural frequencies and increases VIV amplitude of the riser under uniform current, and it triggers higher modal order response under shear current. Under uniform current, Coriolis force does positive or negative work in a certain area, causing the root-mean-square (RMS) displacement to increase or decrease respectively. Under shear current, Coriolis force increases the RMS displacement in the top area of the riser, and decreases the RMS displacement in the middle area. The larger the internal flow velocity is, the more significant the Coriolis force effect is.

关键词

内流 / 涡激振动 / 顶张式立管 / 科氏力 / 时域模型

Key words

internal flow / Vortex-induced vibration / top-tensioned risers / Coriolis force / time domain model

引用本文

导出引用
李星辉1,2,袁昱超1,2,薛鸿祥1,2,唐文勇1,2. 不同流场下含内流立管涡激振动响应特性及Coriolis力效应研究[J]. 振动与冲击, 2023, 42(3): 165-173
LI Xinghui1,2, YUAN Yuchao1,2, XUE Hongxiang1,2, TANG Wenyong1,2. Vortex-induced vibration response characteristics and Coriolis force effect of  riser with internal flow under different flow fields[J]. Journal of Vibration and Shock, 2023, 42(3): 165-173

参考文献

[1] Ogink R ,  Metrikine A V . A wake oscillator with frequency dependent coupling for the modeling of vortex-induced vibration[J]. Journal of Sound & Vibration, 2010, 329(26):5452-5473.
[2] 柳博瀚, 陈正寿, 鲍健,等. 管道内流对海洋弹性管振动影响的数值仿真研究[J]. 振动与冲击, 2020,39(17):177-185+202.
LIU Bo-han, CHEN Zheng-shou, Bao Jian, et al. Numerical simulation for effects of pipeline internal flow on vibration of flexible marine pipe[J]. Journal of Vibration and Shock, 2020,39(17):177-185+202.
[3] Guo H Y ,  Lou M . Effect of internal flow on vortex-induced vibration of risers[J]. Journal of Fluids & Structures, 2008, 24(4):496-504.
[4] Dai H L ,  Wang L ,  Qian Q , et al. Vortex-induced vibrations of pipes conveying fluid in the subcritical and supercritical regimes[J]. Journal of Fluids & Structures, 2013, 39(5):322-334.
[5] Meng S ,  Zhang X ,  Che C , et al. Cross-flow vortex-induced vibration of a flexible riser transporting an internal flow from subcritical to supercritical[J]. Ocean Engineering, 2017, 139(jul.15):74-84.
[6] Duan J ,  Zhou J ,  You Y , et al. Time-domain analysis of vortex-induced vibration of a flexible mining riser transporting flow with various velocities and densities[J]. Ocean Engineering, 2020, 220(7645):108427.
[7] 刘晓强, 余杨, 余建星,等. 海洋输流立管耦合动力分析[J].海洋工程, 2017,35(06):28-36.
LIU Xiao-qiang, YU Yang, YU Jian-xing, et al. Coupled dynamic analysis of marine riser conveying fluid[J]. The Ocean Engineering, 2017,35(06):28-36.
[8] 马天麒, 顾继俊, 孙旭,等. 内输多相流与绕流耦合作用下立管非线性振动[J]. 振动与冲击, 2018,37(23):15-23.
MA Tian-qi, GU Ji-jun, SUN Xu, et al. Nonlinear vibration of a riser under inter-action between internal multi-phase flow and cross flow[J]. Journal of Vibration and Shock, 2018,37(23):15-23.
[9] 刘震, 张永波, 牛建杰,等. 考虑内流作用的钢悬链线立管动力特性分析[J]. 中国海洋大学学报(自然科学版), 2018,48(07):130-135.
LIU Zhen, ZHANG Yong-bo, NIU Jian-jie, et al. Dynamic characteristics analysis of steel catenary riser with internal flow[J]. Periodical of Ocean University of China, 2018,48(07):130-135.
[10] 刘震, 郭海燕, 牛建杰. 考虑内流作用的缓波形立管非线性静动力分析[J]. 中国海洋大学学报(自然科学版), 2019,49(05):101-107.
LIU Zhen, GUO Hai-yan, NIU Jian-jie. Nonlinear static and dynamic analysis of lazy wave riser with internal flow[J]. Periodical of Ocean University of China, 2019,49(05):101-107.
[11] Liu Z Y ,  Wang L ,  Dai H L , et al. Nonplanar vortex-induced vibrations of cantilevered pipes conveying fluid subjected to loose constraints[J]. Ocean Engineering, 2019, 178(APR.15):1-19.
[12] Chatjigeorgiou I K . On the effect of internal flow on vibrating catenary risers in three dimensions[J]. Engineering Structures, 2010, 32(10):3313-3329.
[13] 吴天昊, 付世晓, 任桐鑫,等. 平台运动与管内流动联合作用下悬垂立管动力响应特性研究[J]. 振动与冲击, 2018, 037(017):32-40,47.
WU Tian-hao, FU Shi-xiao, REN Tong-xin, et al. Dynamic responses of water intake risers under interaction between vessel motion and internal flow[J]. Journal of Vibration and Shock, 2018, 037(017):32-40,47.
[14] 孟丹. 钢悬链线输流立管顶部浮体激励非线性响应研究[J].振动与冲击, 2013,32(04):96-101.
MENG Dan. Nolinear dynamic responses of fluid-conveying steelcatenary risers subjected to top excitation[J] Journal of Vibration and Shock, 2013,32(04):96-101.
[15] 郭海燕, 傅强, 娄敏. 海洋输液立管涡激振动响应及其疲劳寿命研究[J]. 工程力学, 2005(04):220-224.
GUO Hai-yan, FU Qiang, LOU Min. Vortex-induced vibrations and fatigue life of marine risers conveying flowing fluid[J]. Engineering Mechanics, 2005(04):220-224.
[16] 骆正山, 蔡梦倩. 深海立管VIV预测模型及影响因素研究[J]. 中国安全科学学报, 2019,29(07):6-11.
LUO Zheng-shan, CAI Meng-qian. Research on VIV prediction model and influence factors of deep-water risers[J]. China Safety Science Journal, 2019,29(07):6-11.
[17] Gopalkrishnan R ,  Institution W H O . Vortex-induced forces on oscillating bluff cylinders[J]. massachusetts institute of technology, 1993.
[18] Venugopal M . Damping and Response of a Flexible Cylinder in a Current[D]. Massachusetts Institute of Technology, 1996.
[19] Païdoussis M P . Fluid-Structure Interactions: Volume 1: Slender Structures and Axial Flow[M]. 2014.
[20] Hilber H M ,  Hughes T J R ,  Taylor R L . Improved numerical dissipation for time integration algorithms in structural dynamics[J]. Earthquake Engineering and Structural Dynamics, 1977, 5(3):283–292.
[21] Yuan Y ,  Xue H ,  Tang W . Nonlinear dynamic response analysis of marine risers under non-uniform combined unsteady flows[J]. Ocean Engineering, 2020, 213:10768
[22] Trim A D ,  Braaten H ,  Lie H , et al. Experimental investigation of vortex-induced vibration of long marine risers[J]. Journal of Fluids & Structures, 2005, 21(3):335-361.
[23] Lie H ,  Kaasen K E . Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow[J]. Journal of Fluids and Structures, 2006, 22(4):557-575

PDF(3099 KB)

334

Accesses

0

Citation

Detail

段落导航
相关文章

/