基于灵敏度分析的转向架构架有限元模型修正

刘乐天,李凡松,宋烨,刘潮涛, 邬平波

振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 181-186.

PDF(1361 KB)
PDF(1361 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 181-186.
论文

基于灵敏度分析的转向架构架有限元模型修正

  • 刘乐天,李凡松,宋烨,刘潮涛,邬平波
作者信息 +

Finite element model updating of bogie frame based on sensitivity analysis

  • LIU Letian, LI Fansong, SONG Ye, LIU Chaotao, WU Pingbo
Author information +
文章历史 +

摘要

准确的构架有限元模型可以为转向架前期设计和后期优化提供保障,从而避免激励与构架模态共振发生事故,但构架有限元建模产生误差是不可避免的。为获得准确的有限元模型,本文推导了灵敏度矩阵加权算法,基于该算法,以构架模态试验数据为基准,以焊缝区等效弹性模量和主要板材厚度为修正参数,以模态频率和振型MAC值误差最小化为修正目标,对转向架构架有限元模型进行修正,修正结果显示与频率试验值误差控制在1%以内。另外,研究发现构架MAC值修正效果不明显,仅考虑频率修正项时依然可以获得准确模型。

Abstract

Accurate bogie frame finite element model can provide guarantee for the early design and later optimization of the bogie, so as to avoid accidents caused by excitation and bogie frame modal resonance, but the error of bogie frame finite element modeling is inevitable. In order to obtain an accurate finite element model, this paper deduces the sensitivity matrix weighting algorithm. Based on this algorithm, the finite element model of bogie frame is modified with the frame modal test data as the benchmark, the equivalent elastic modulus at the weld and the main plate thickness as the correction parameters, and the minimization of the error of modal frequency and vibration mode MAC value as the correction goal, The correction results show that the error with the frequency test value is controlled within 1%. In addition, it is found that the MAC value correction effect of the architecture is not obvious, and the accurate model can still be obtained when only the frequency correction term is considered.

关键词

模型修正 / 灵敏度分析 / 构架 / 模态 / 加权

Key words

model updating / sensitivity analysis / bogie frame / modal / weighting

引用本文

导出引用
刘乐天,李凡松,宋烨,刘潮涛, 邬平波. 基于灵敏度分析的转向架构架有限元模型修正[J]. 振动与冲击, 2023, 42(3): 181-186
LIU Letian, LI Fansong, SONG Ye, LIU Chaotao, WU Pingbo. Finite element model updating of bogie frame based on sensitivity analysis[J]. Journal of Vibration and Shock, 2023, 42(3): 181-186

参考文献

[1] 何宇, 曾飞,王安斌等. 某型动车组动力转向架构架优化设计[J]. 机电工程技术, 2021, 50(10): 101-104.
He Yu, Zeng Fei, Wang Anbin, et al. Optimum Design of Bogie Frame for Rail Transit Vehicles[J]. Mechanical and Electrical Technology. 2021, 50(10): 101-104.
[2] 王腾飞, 肖绯雄, 贾宏宇等, 基于多维多点虚拟激励法对转向架构架随机振动疲劳寿命预测[J]. 振动与冲击, 2020, 39(22): 192-197.
Wang Tengfei, Xiao Feixiong, Jia Hongyu, et al. Fatigue life prediction of bogie frames under random vibration based on the multi-dimensional and multi-support pseudo excitation method[J]. Journal of Vibration and Shock, 2020, 39(22): 192-197.
[3] Qu Sheng, Wang Jianbin, Zhang Dafu, et al. Failure analysis on bogie frame with fatigue cracks caused by hunting instability[J]. Engineering Failure Analysis, 2021, 128: 1-11.
[4] 徐宁, 任尊松, 李强等. 基于用条件和频域特征的动车组转向架构架疲劳损伤规律研究[J]. 机械工程学报, 2021, 57: 1-12.
Xu Ning, Ren Zunsong, Li Qiang, et al. Research on Fatigue of Bogie Frame of EMU Based on Running Conditions and Frequency Domain Characteristics[J]. Journal of Mechanical Engineering, 2021, 57: 1-12.
[5] Mingyue Wang, Sheng Xiaozhen, Li, Muxiao, et al. Estimation of vibration powers flowing to and out of a high-speed train bogie frame assisted by time-domain response reconstruction[J]. Applied Acoustics, 2022, 185: 1-18.
[6] Lu Yaohui, Xiang Penglin, Dong P, et al. Analysis of the effects of vibration modes on fatigue damage in high-speed train bogie frames[J]. Engineering Failure Analysis, 2018, 89: 222-241.
[7] 石怀龙, 罗仁, 王勇等. 变轨距货车转向架的动力学分析[J]. 动力学与控制学报, 2020, 18(3): 80-85.
Shi Huailong, Luo Ren, Wang Yong, et al. Dynamics Analysis of a Gauge-Changeable Railway Freight Vehicle Bogie[J]. Journal of Dynamics and Control, 2020, 18(3): 80-85.
[8] 王建斌, 李大地, 屈升. 高速列车转向架构架疲劳试验载荷谱研究[J]. 机械工程学报, 2019, 55(24): 172-177.
Wang Jianbin, Li Dadi, Qu Sheng. Research on the Fatigue Test Spectrum for High Speed Train Bogie Frames[J]. Journal of  Mechanical Engineering, 2019, 55(24): 172-177.
[9] Edoardo Patelli, Yves Govers, Matteo Broggi, et al. Sensitivity or Bayesian model updating: a comparison of techniques using the DLR AIRMOD test data[J]. Archive of Applied Mechanics, 2017, 87(5): 905-925.
[10] Xueqian Chen, Zhanpeng Shen, Xin’en Liu, et al. Structural dynamics model updating with interval uncertainty based on response surface model and sensitivity analysis[J]. Inverse Problems in Science and Engineering, 2019, 20(10): 1425-1441.
[11] 张亚峰, 殷红, 彭珍瑞等. 基于位移频响函数灵敏度分析的模型修正[J]. 振动与冲击, 2021, 40(17): 63-69.
Zhang Yafeng, Yin Hong, Peng Zhenrui, et al. Model updating based on sensitivity analysis of displacement FRF[J]. Journal of Vibration and Shock, 2021, 40(17): 63-69.
[12] 邢宏健, 张生, 杨波等. 基于模态试验的特种车驾驶室有限元模型修正[J].  导弹与航天运载技术, 2018(2): 99-104.
Xing Hongjian, Zhang Sheng, Yang Bo, et al. Finite Element Model Updating of Special Vehicle’s Cab Based on Experimental Modals[J]. Missiles and Space Vehicles, 2018(2): 99-104.
[13] 李坤, 张宇鑫. 基于灵敏度矩阵分析的钢桁架桥模型修正[J]. 建筑钢结构进展, 2020, 22(6): 94-99.
Li Kun, Zhang Yuxin. A Modification of Steel Truss Bridge Model Based on Sensitivity Analysis Method[J].  Progress in Steel Building Structures, 2020, 22(6): 94-99.
[14] 李凡松. 服役环境下动车组车体振动与疲劳研究[D]. 成都: 西南交通大学, 2017.
Li Fangsong. Research on Vibration and Fatigue of Carbody for
EMU under Service Environment[D]. Chengdu: Southwest Jiaotong University, 2017.
[15] Benedikt Hofmeister, Marlene Bruns, Raimund Rolfes. Finite element model updating using deterministic optimisation: A global pattern search approach[J]. Engineering Structures, 2019, 195:373-381.
[16] John E. Mottershead., Michael Link, Michael I. Friswell. The sensitivity method in finite element model updating: A tutorial[J]. Mechanical Systems and Signal Processing, 2011(25): 2275-2296.
[17] 邱飞力, 张立民,  张卫华. 基于参数扰动比的高速列车车体模型修正研究[J]. 铁道学报, 2016, 38(5): 30-34.
Qiu Feili, Zhang Liming, Zhang Weihua. Study of High Speed Train Model Updating Based on Parameter Disturbance Ratio[J]. Journal of China Railway Society, 2016, 38(5): 30-34.
[18] 张淼. 基于模态参数灵敏度的模型修正方法研究[J]. 长春工程学院学报, 2019, 20(3): 118-125.
Zhang Miao. Research on Methods of Finite Element Model Updating Based on Modal Parameter Sensitivity[J]. Journal of Changchun Institute of Technology,  2019, 20(3): 118-125.
[19] 张权, 史治宇. 加权方法在基于灵敏度分析的模型修正中的应用[J]. 信息技术, 2018, 21(6): 85-88.
Zhang Quan, Shi Zhiyu. Study of Weighted Coefficient in Model Updating Based on Sensitivity Analysis[J]. Information Technology, 2018, 21(6): 85-88.
[20] 张权. 列车转向架有限元模型修正的方法与软件实现[D]. 南京: 南京航空航天大学, 2017.
Zhang Quan. The Method and Software Realization of Finite Element Model Updating of Bogie[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
[21] GB/T 709-2019 热轧钢板和钢带的尺寸、外形、重量及允许偏差[S]. 北京: 中国标准出版社, 2019.
[22] GB/T 11349.2-2006 振动与冲击-机械导纳的试验确定-第2部分:用激振器作单点平动激励测量[S]. 北京: 中国标准出版社, 2006.

PDF(1361 KB)

Accesses

Citation

Detail

段落导航
相关文章

/