负泊松比内凹蜂窝结构梯度设计与动态冲击响应

张晓楠1,2,晏石林1,2,欧元勋1,2,文聘1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 193-198.

PDF(2357 KB)
PDF(2357 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 193-198.
论文

负泊松比内凹蜂窝结构梯度设计与动态冲击响应

  • 张晓楠1,2,晏石林1,2,欧元勋1,2,文聘1,2
作者信息 +

Gradient design and dynamic impact response of concave honeycomb structures with negative Poisson’s ratio

  • ZHANG Xiaonan1,2, YAN Shilin1,2, OU Yuanxun1,2, WEN Pin1,2
Author information +
文章历史 +

摘要

根据负泊松比内凹蜂窝结构的变形机理,提出了一种变截面内凹蜂窝结构构型,利用ABAQUS研究了三维结构的动力学特性,分析了变截面负泊松比蜂窝结构在准静态压缩时的变形模式,并进行了实验验证,实验结果与有限元吻合良好。讨论了在不同冲击速度下梯度变截面内凹蜂窝结构的能量吸收性能,结果表明在中低速下双向负梯度的能量吸收效果优于其他三种结构。所得结果为研究负泊松比力学超结构在动态冲击作用下的能量吸收提供了参考。

Abstract

According to the deformation mechanism of auxetic re-entrant honeycomb structure, an auxetic re-entrant honeycomb structure with variable cross section is proposed. The dynamic characteristics of the three-dimensional structure were studied using ABAQUS, and the deformation mode of auxetic re-entrant honeycomb structure with variable cross section under quasi-static compression was analyzed and verified by experiments. The experimental results are in good agreement with the finite element method. The energy absorption performance of auxetic re-entrant honeycomb structure with the gradient variable cross section under different impact velocities was discussed. The results show that the energy absorption performance of bidirectional negative gradient honeycomb structure is found to be the best compared to the other three structures at different specific impact velocities. The conclusion provides a reference for studying the energy absorption of auxetic metamaterial under dynamic impact.

关键词

负泊松比 / 蜂窝结构 / 梯度 / 能量吸收 / 动态冲击

Key words

Negative Poisson's ratio / honeycomb structure / gradient / energy absorption / dynamic impact

引用本文

导出引用
张晓楠1,2,晏石林1,2,欧元勋1,2,文聘1,2. 负泊松比内凹蜂窝结构梯度设计与动态冲击响应[J]. 振动与冲击, 2023, 42(3): 193-198
ZHANG Xiaonan1,2, YAN Shilin1,2, OU Yuanxun1,2, WEN Pin1,2. Gradient design and dynamic impact response of concave honeycomb structures with negative Poisson’s ratio[J]. Journal of Vibration and Shock, 2023, 42(3): 193-198

参考文献

[1] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展. 力学学报[J].2019, 51(3): 656-687.
    REN Xin, ZHANG Xiangyu, XIE Yimin. Research progress in auxetic materials and structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):656-687.
[2] 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13): 1-14.
YU Jingjun, XIE Yan, PEI Xu. State-of-art Metamaterials with Negative Poisson’s Ratio[J]. Journal of Mechanical Engineering, 2018, 54(13): 1-14.
[3] ZHOU G, YAN P F, DAI S J, et al. Design optimization for protective shell of hydrogen cylinder for vehicle based on NPR structure[J]. Structural and Multidisciplinary Optimization, 2021,64(1):369-388.
[4] WANG L Y, ZHAO W Z, ZHOU G, et al. Parametric design strategy of a novel cylindrical negative Poisson’s ratio jounce bumper for ideal uniaxial compression load-displacement curve[J]. Science China Technological Sciences, 2018, 61(010): 1611-1620.
[5] WANG T, AN J H, HE H, et al. A novel 3D impact energy absorption structure with negative Poisson’s ratio and its application in aircraft crashworthiness[J]. Composite Structures, 2021,262.
[6] HU C, DONG J Q, LUO J J, et al. 3D printing of chiral carbon fiber reinforced polylactic acid composites with negative Poisson's ratios[J]. Composites Part B,2020,201.
[7] LI D W, BU X C, XV Z P, et al. Bioinspired Multifunctional Cellular Plastics with a Negative Poisson's Ratio for High-Energy Dissipation[J]. Advanced materials (Deerfield Beach, Fla.),2020,32(33).
[8] YANG S, QI C, GUO D M, et al. Energy Absorption of an Re-Entrant Honeycombs with Negative Poisson’s Ratio[J]. Applied Mechanics and Materials,2012,148-149.
[9] GAO Q, ZHAO X, WANG C Z, et al. Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading[J]. Materials & Design, 2018,143:120-130.
[11] 唐恩凌,徐名扬,张庆明,等.超高速撞击厚靶过程的能量分配研究[J]. 固体力学学报, 2016,37(02):152-160.
TANG Enling, XV Mingyang, ZHANG Qingming, et al. Study on Partitioning of Energy in Hypervelocity Impact on Thick Target[J]. Chinese Journal of Solid Mechanics, 2016, 37 (02):152-160.
[12] QI C, JIANG F, Alex R, et al. Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs[J]. Composites Part B,2020,197.
[13] LU H, WANG X P, CHEN T N, et al. In-plane dynamics crushing of a combined auxetic honeycomb with negative Poisson's ratio and enhanced energy absorption[J]. Thin-Walled Structures,2021,160.
[14] XIAO D B, KANG X, LI Y, et al. Insight into the negative Poisson's ratio effect of metallic auxetic reentrant honeycomb under dynamic compression[J]. Materials Science & Engineering A, 2019,763(C).
[15] 张新春, 刘颖, 李娜. 具有负泊松比效应蜂窝材料的面内冲击动力学性能. 爆炸与冲击, 2012, 32(05): 475-482.
    ZHANG Xinchun, LIU Ying, LI Na. In-plane dynamic crushing of honeycombs with negative Poisson’s ratio effects[J]. Journal of Vibration and Shock, 2012, 32(05): 475-482.
[16] 白临奇,史小全,刘宏瑞,等.冲击载荷下箭头型负泊松比蜂窝结构动态吸能性能研究[J]. 振动与冲击, 2021,40(11):70-77.
BAI Linqi, SHI Xiaoquan, LIU Hongrui, et al. Dynamic energy absorption performance of arrow type honeycomb structure with negative Poisson’s ratio under impact load[J]. Journal of Vibration and Shock,2021,40(11):70-77.
[17] 任晨辉,杨德庆.二维负刚度负泊松比超材料及其力学性能[J].哈尔滨工程大学学报,2020,41(08):1129-1135.
REN Chenhui, YANG Deqing. Mechanical properties of a 2D metamaterial with negative stiffness and negative Poisson’s ratio[J]. Journal of Harbin Engineering University, 2020, 41 (08):1129-1135.
[18] 黄秀峰,张振华,巫继航.聚脲涂覆三维负泊松比点阵夹层结构在碰撞冲击作用下的动态响应试验[J].振动与冲击,2021,40(17):259-270.
HUANG Xiufeng, ZHANG Zhenhua, WU Jihang. Dynamic response tests of polyurea-coated 3-D lattice sandwich structure with negative Poisson’s ratio under impact load[J]. Journal of Vibration and Shock, 2021,40(17):259-270.
[19] 魏路路,余强,赵轩,等.内凹-反手性蜂窝结构的面内动态压溃性能研究[J].振动与冲击,2021,40(04):261-269.
Wei Lulu, Yu Qiang, Zhao Xuan, et al. In-plane dynamic crushing characteristics of re-entrant anti-trichiral honeycomb[J]. Journal of Vibration and Shock, 2021, 40 (04):261-269.
[20] 马芳武,王强,梁鸿宇,等. 梯度负泊松比结构填充吸能盒多工况优化设计[J]. 汽车工程,2021,43(05):754-761+769.
MA Fangwu, WANG Qiang, LIANG Hongyu, et al. Multi-objective Optimization of Crash Box Filled Gradient Negative Poisson’s Ratio Structure Under Multiple Conditions[J]. Automotive Engineering, 2021,43(05):754-761+769.
[21] XU F X, YU K J, HUA L. In-plane dynamic response and multi-objective optimization of negative Poisson's ratio (NPR) honeycomb structures with sinusoidal curve[J]. Composite Structures,2021,269(2).
[22] 袁敏,徐峰祥,龚铭远.梯度厚度负泊松比蜂窝材料面内冲击特性[J].塑性工程学报,2021,28(06):192-199.
YUAN Min, XV Fengxiang, GONG Mingyuan. In-Plane impact performance of honeycomb material with gradient thickness and negative Poisson’s ratio[J]. Journal of Plasticity Engineering[J], 2021,28(06):192-199.
[23] ZAREI H R, KROGER M. Crashworthiness optimization of empty and filled aluminum crash boxes [J]. International Journal of Crashworthiness,2007,12:255-264.
 

PDF(2357 KB)

495

Accesses

0

Citation

Detail

段落导航
相关文章

/