基于SSA-VMD-MCKD的强背景噪声环境下滚动轴承故障诊断

任良,甄龙信,赵云,董前程,张云鹏

振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 217-226.

PDF(2960 KB)
PDF(2960 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 217-226.
论文

基于SSA-VMD-MCKD的强背景噪声环境下滚动轴承故障诊断

  • 任良,甄龙信,赵云,董前程,张云鹏
作者信息 +

Fault diagnosis of rolling bearing under strong background noise based on SSA-VMD-MCKD

  • REN Liang, ZHEN Longxin, ZHAO Yun, DONG Qiancheng, ZHANG Yunpeng
Author information +
文章历史 +

摘要

为在强背景噪声环境下有效提取滚动轴承微弱故障特征并准确诊断故障,提出奇异谱分析(Singular Spectrum Analysis,SSA)、变分模态分解(Variational Mode Decomposition,VMD)和最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)结合的滚动轴承故障诊断方法。首先,利用SSA算法将故障信号分解,根据时域互相关准则对分解信号筛选重构;其次,利用鲸鱼优化算法(The Whale Optimization Algorithm,WOA)分别优化VMD的参数alpha,K以及MCKD的参数L和M,利用参数优化的VMD对重构信号进行分解,根据峭度指标从分解所得的本征模态函数(Intrinsic Mode Function,IMF)中提取故障特征信号;再次,利用参数优化的MCKD算法增强故障特征;最后,通过频谱包络进行故障诊断。仿真和试验表明所提方法能在强噪声干扰下有效提取并诊断轴承故障。

Abstract

In order to effectively extract the weak fault characteristics of rolling bearing and accurately diagnose the fault in the environment of strong background noise, a rolling bearing fault diagnosis method combining singular spectrum analysis (SSA), variational mode decomposition (VMD) and maximum correlated kurtosis deconvolution (MCKD) was proposed. Firstly, the fault signal was decomposed by SSA algorithm, and the decomposed signal was filtered and reconstructed according to the time-domain cross-correlation criterion; Secondly, the whale optimization algorithm (WOA) was used to optimize the parameters alpha, K of VMD and L and M of MCKD respectively. The reconstructed signal was decomposed by the parameter optimized VMD, and the fault characteristic signal was extracted from the decomposed intrinsic mode function (IMF) according to the kurtosis index; Thirdly, the parameter optimized MCKD algorithm was used to enhance the impact characteristics in the fault characteristic signal; Finally, fault diagnosis was carried out through spectrum envelope. Simulation and experiments show that the proposed method can effectively extract and diagnose bearing faults under the interference of strong background noise.

关键词

奇异谱分析(SSA) / 变分模态分解(VMD) / 最大相关峭度解卷积(MCKD) / 鲸鱼仿生优化算法(WOA) / 轴承故障诊断

Key words

singular spectrum analysis (SSA) / variational modal decomposition (VMD) / maximum correlation kurtosis deconvolution (MCKD) / whale bionic optimization algorithm (WOA) / bearing fault diagnosis

引用本文

导出引用
任良,甄龙信,赵云,董前程,张云鹏. 基于SSA-VMD-MCKD的强背景噪声环境下滚动轴承故障诊断[J]. 振动与冲击, 2023, 42(3): 217-226
REN Liang, ZHEN Longxin, ZHAO Yun, DONG Qiancheng, ZHANG Yunpeng. Fault diagnosis of rolling bearing under strong background noise based on SSA-VMD-MCKD[J]. Journal of Vibration and Shock, 2023, 42(3): 217-226

参考文献

[1] Zhang Y, Lv Y, Ge M. Complementary ensemble adaptive local iterative filtering and its application to rolling
bearing fault diagnosis[J]. IEEE Access, 2021, PP(99): 1-1.
[2] 刘湘楠,赵学智,上官文斌.强背景噪声振动信号中滚动轴承故障冲击特征提取[J].振动工程学报,2021, 34(1): 202-210.
Liu Xiangnan, Zhao Xuezhi, Shangguan Wenbin. Fault impact feature extraction of rolling bearing in strong background noise vibration signal [J]. Journal of vibration engineering, 2021, 34(1): 202-210
[3] 吕跃刚,何洋洋. EWT和ICA联合降噪在轴承故障诊断中的应用[J]. 振动与冲击,2019, 38(16): 42-48+70.
LV Yuegang, he Yangyang. Application of EWT and ICA combined noise reduction in bearing fault diagnosis [J]. Journal of Vibration and Shock, 2019, 38(16): 42-48 +70
[4] 吴雅朋,王吉芳,徐小力,等. 基于小波分析的FastICA联合降噪方法在滚动轴承故障诊断中的应用研究[J]. 中国机械工程,2017, 28(18): 2183-2188+2197.
Wu Yapeng, Wang Jifang, Xu Xiaoli, et al. Application of FastICA combined noise reduction method based on wavelet analysis in rolling bearing fault diagnosis [J]. China Mechanical Engineering, 2017, 28(18): 2183-2188+ 2197
[5] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903-995.
[6] Wu Zhao-hua and Huang Norden E. Ensemble empiricalmode decomposition: a noise assisted data analysis method[J].Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[7] 刘兴教,赵学智,李伟光,等. 基于峭度原则的EEMD-MCKD的柔性薄壁轴承故障特征提取[J]. 振动与冲击, 2021, 40(01): 157-164.
Liu Xingjiao, Zhao Xuezhi, Li Weiguang, et al. Fault feature extraction of flexible thin-walled bearing based on eemd-mckd based on kurtosis principle [J]. Journal of Vibration and shock, 2021, 40(01): 157-164
[8] Dragomiretskiy K , Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
[9] 任朝晖,于天壮,丁东,等. 基于VMD-DBN的滚动轴承故障诊断方法[J]. 东北大学学报(自然科学版),2021, 42(08): 1105-1110.
Ren Zhaohui, Yu Tianzhuang, Ding Dong, et al. Rolling bearing fault diagnosis method based on vmd-dbn [J].
Journal of Northeast University Natural Science, 2021, 42(08): 1105-1110
[10] 尹佳璠,陈小奇,李世林,等. 优化VMD与NLM结合的信号去噪[J]. 计算机工程与设计,2021, 42(04): 1135-1142.
Yin Jiaxiang, Chen Xiaoqi, Li Shilin, et al. Optimizing
signal denoising combined with VMD and NLM [J]. Computer engineering and design, 2021, 42(04): 1135-1142
[11] Mcdonald G L , Zhao Q , Zuo M J . Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal
Processing, 2012, 33(Complete): 237-255.
[12] 王新刚,王超,韩凯忠. 基于优化VMD和MCKD的滚动轴承早期故障诊断方法[J]. 东北大学学报(自然科学版),2021, 42(3): 373-380,388.
Wang Xingang, Wang Chao, Han Kaizhong. Early fault diagnosis method of rolling bearing based on optimized VMD and MCKD [J]. Journal of Northeast University
Natural Science, 2021, 42(3): 373-380,388
[13] Myung N K . Singular spectrum analysis[J]. Springer
Berlin, 2009, 1283(4): 932-942.
[14] Yang B, Yu C, Dong Y. Capacitively Coupled Electrocardiogram Measuring System and Noise Reduction by Singular Spectrum Analysis[J]. IEEE Sensors Journal, 2016, 16(10): 1-1.
[15] Sugita N, Akay M, Y Akay, et al. Noise reduction technique for single-color video plethysmography using singular spectrum analysis[J]. IEEE Journal of Biomedical and Health Informatics, 2019, PP(99): 1-1.
[16] 黄衍. 基于变分模态分解与形态学滤波的高速列车轴箱轴承故障诊断方法研究[D]. 西南交通大学,2020.
Huang Yan. Research on fault diagnosis method of axle box bearing of high-speed train based on variational modal decomposition and morphological filtering [D]. Southwest Jiaotong University, 2020
[17] Mirjalili S, Lewis A. The Whale Optimization Algorithm[J]. Advances in Engineering Software, 2016, 95(5): 51-67

PDF(2960 KB)

523

Accesses

0

Citation

Detail

段落导航
相关文章

/