典型悬吊式管道抗震支架地震响应试验评估

刘荣恒1,2,胡静1,2,3,戴君武1,2,杨永强1,2,陈家晖3,姜涛1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 235-242.

PDF(1734 KB)
PDF(1734 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 235-242.
论文

典型悬吊式管道抗震支架地震响应试验评估

  • 刘荣恒1,2,胡静1,2,3,戴君武1,2,杨永强1,2,陈家晖3,姜涛1,2
作者信息 +

Test evaluation for seismic response of typical suspended pipeline seismic bracing

  • LIU Rongheng1,2, HU Jing1,2,3, DAI Junwu1,2, YANG Yongqiang1,2, CHEN Jiahui3, JIANG Tao1,2
Author information +
文章历史 +

摘要

地震中非结构部件的破坏是造成建筑功能丧失及重大经济损失的重要原因,其中抗震支架破坏直接导致管道系统失效。由于国内相关研究较为缺乏,本文通过直接对管道进行加载对管道系统常用某型抗震支架进行了6组拟静力试验,其中顺管向加载为P1类试件,垂直管向加载为P2类试件,得到了其在FEMA 461加载履历下的破坏模式及其平均等效阻尼比,并根据FEMA P-795相关规定将构件极限位移、屈服位移及有效延性系数作为工程需求参数,同时将构件损伤控制及保证生命安全等国际通用非结构部件性能目标与GB 50011-2010中非结构部件的抗震设防目标相关联,并计算了该类构件的平均等效阻尼比,而平均等效阻尼比可反映试件耗能能力。结果表明,P1类试件管道拔出是管道系统失效的主要原因;P2类试件为悬吊支撑中的螺杆破坏导致管道系统失效;分析了两类试件在试验中的薄弱环节并提出了相应改进措施;P1类试件平均等效阻尼比为25%,P2类试件平均等效阻尼比为29%,该型试件滞回耗能性能良好。

Abstract

The damage of nonstructural components in earthquake is the important reason for the loss of building function and significant economic loss, in which the damage of seismic bracing directly leads to the failure of piping system. Due to the lack of relevant research in China, six groups of quasi-static tests are carried out on a certain type of seismic bracing commonly used in the piping system. Through direct loading on the pipe (P1 specimen in the along pipe direction and P2 specimen in the vertical pipe direction), the failure mode and its average equivalent damping ratio under FEMA 461 loading testing protocol are obtained. According to the relevant provisions of FEMA P-795, the ultimate displacement, the yield displacement and effective ductility factor are taken as the engineering demand parameters, and the international general performance objectives of nonstructural components such as Damage limitation performance objective and Life safety performance objective are associated with the seismic fortification objectives of nonstructural components in GB 50011-2010. The average equivalent damping ratio of this kind of components is calculated, the average equivalent damping ratio can be used as the basis to judge the energy dissipation capacity of the specimen. The results show that the pull-out of P1 specimen is the main cause of piping system failure; P2 type test piece is the lead screw in the suspension support, which leads to the failure of the piping system; The weak links of the two kinds of specimens in the test are analyzed, and the corresponding improvement measures are put forward; The equivalent damping ratio of P1 specimen is 25%, and that of P2 specimen is 29%. This type of specimen has good hysteretic energy dissipation performance.

关键词

抗震支架 / 拟静力试验 / 有效延性系数 / 工程需求参数

Key words

seismic bracing / quasi-static test;effective ductility factor;engineering demand parameters

引用本文

导出引用
刘荣恒1,2,胡静1,2,3,戴君武1,2,杨永强1,2,陈家晖3,姜涛1,2. 典型悬吊式管道抗震支架地震响应试验评估[J]. 振动与冲击, 2023, 42(3): 235-242
LIU Rongheng1,2, HU Jing1,2,3, DAI Junwu1,2, YANG Yongqiang1,2, CHEN Jiahui3, JIANG Tao1,2. Test evaluation for seismic response of typical suspended pipeline seismic bracing[J]. Journal of Vibration and Shock, 2023, 42(3): 235-242

参考文献

[1] Taghavi,Miranda. Response Assessment of Nonstructural Building Elements [R]. Report 2003/05,Pacific Earthquake Engineering Research Center, 2003.
[2]  Filiatrault A ,  Uang C M ,  Folz B , et al. Reconnaissance report of the February 28, 2001 Nisqually (Seattle-Olympia) Earthquake[J]. ssrp, 2001.
[3] OSHPD (1995) The Northridge earthquake: a report to the hospital building safety board on the performance of hospitals. Office of Statewide Health Planning and Development, Facilities Development Division, Sacramento, California.
[4] Miranda E, Mosqueda G, Retamales R, Pekcan G (2012) Performance of nonstructural components during the February 27, 2010 Chile Earthquake. Earthq Spectra 28(S1):S453–S471
[5] Daniele Perrone, Experimental seismic response evaluation of suspended piping restraint installations. Earthq Spectra 28(S1):S453–S471
[6] 赵保磊,余建星,孙震洲,高静坤,刘浩.深水管道在动力载荷作用下的局部压溃特性研究[J].振动与冲击,2017,36(17):104-110+133.DOI:10.13465/j.cnki.jvs.2017.17.017.
Zhao Bao-lei1,Yu Jian-xing,Sun Zhen-zhou. Research on Local Pressure Collapse Characteristics of Deep Water Pipeline Under Dynamic Loading[J]. Journal of vibration and shock,2017,36(17):104-110+133.DOI:10.13465/j.cnki.jvs.2017.17.017.
[7] 林天翔,冯少孔,叶冠林,朱新民,车爱兰.大型压力输水管道泄漏监测方法的试验研究[J].振动与冲击,2021,40(05):136-142.
LIN Tianxiang, FENG Shaokong, YE Guanlin. Tests for leakage monitoring method of large pressure water pipeline[J]. Journal of vibration and shock,2021,40(05):136-142.
[8] Tian Y , Filiatrault A, Mosqueda G. Seismic response of pressurized fire sprinkler piping systems i: experimental study [J]. Journal of Earthquake Engineering, 2014, 19(4): 649―673.
[9] Zaghi A E, Maragakis E M, Itani A, et al. Experimental and analytical studies of hospital piping assemblies subjected to seismic loading [J]. Earthquake Spectra, 2012, 28(1): 367―384.
[10] Tian Y, Filiatrault A, Mosqueda G (2014a) Experimental seismic fragility of pressurized fire suppression sprinkler piping joints. Earthq Spectra 30(4):1733–1748
[11] Hoehler M S, Panagiotou M, Restrepo J I, et al. Performance of suspended pipes and their anchorages during shake table testing of a seven-story building [J]. Earthquake Spectra, 2009, 25(1): 71-91
[12] ASCE 7-05 Minimum Design Loads and Associated Criteria for Buildings and Other Structures[S] . AMERICAN SOCIETY OF CIVIL ENGINEERS, 2005.
[13] FEMA P-795: Quantification of building seismic performance factors: component equivalency methodology. Federal Emergency Management Agency, Washington, D.C.
[14] 尚庆学,李泽,刘瑞康,等. 管线系统抗震支架力学试验研究[J]. 工程力学,2018,35(增刊1):120-125,133.
SHANG Qing-xue, et al. Experimental study on properties of aseismic braces used in pipe line systems[J].Engineering Mechanics,2018,35(Suppl.1):120-125,133.
[15] 尚庆学,李吉超,王涛.消防管线卡箍接头抗震性能试验研究[J].地震工程与工程振动,2018,38(06):86-94.
SHANG Qing-xue, LI Ji-chao, WANG Tao. Experimental study on seismic performance of grooved fit joints of fire sprinkler piping system [J]. Earthquake Engineering and Engineering Dynamics, 2018,38(06):86-94.
[16] 贺思维,曲哲 & 叶良浩.(2018).建筑常用给水管道地震易损性试验研究. 土木工程学报(10),11-19. doi:10.15951/j.tmgcxb.2018.10.002.
HE Si-wei, QU Zhe, YE Liang-hao. Experiment on seismic fragility of water supply pipelines in buildings. China Civil Engineering Journal,
(10),11-19. doi:10.15951/j.tmgcxb.2018.10.002.
[17] FEMA 461: Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components. Federal Emergency Management Agency, Washington, D.C.
[18] GB50981-2014, 建筑机电工程抗震设计规范[S].
GB50981-2014, Code for seismic design of mechanical and electrical equipment[S].
[19] GB/T 17395-2008, 无缝钢管尺寸、外形、重量及允许偏差[S].
GB/T 17395-2008,Dimensions, shapes, masses and tolerances of seamless steel tubes[S].
[20] Krawinkler H (1999) Challenges and progress in performance-based earthquake engineering. International seminar on seismic engineering for tomorrow – in honor of professor Hiroshi Akiyama, Tokyo, Japan
[21] Yang TY, Moehle J, Stojadinovic B, et al. Seismic performance evaluation of facilities: methodology and implementation.[J] Journal of Structural Engineering ,2009,135(10):1146–1154
[22] Filiatrault A, Sullivan T (2014) Performance-based seismic design of nonstructural building components: the next frontier of earthquake engineering[J]. Earthquake Engineering and Engineering Vibration , 2014,13 (Suppl 1):17–46
[23] JACOBSEN L S.Damping in composite structures[C]// 2nd World Conference on Earthquake Engineering. Tokyo:WCEE,1960.
[24] GB 50011—2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010 .
GB 50011—2010 Code for seismic  design  of  buildings[S].  Beijing:  China Architecture & Building Press, 2010 (in Chinese)

PDF(1734 KB)

Accesses

Citation

Detail

段落导航
相关文章

/