研究典型柱型破片质量、着靶姿态对装甲钢的弹道极限速度(V50)的影响规律,可为战斗部毁伤元设计提供有效的参考数据。本文通过弹道冲击试验获取了长径比为1,质量5g的钨柱在0°和90°着靶姿态下对10mm装甲钢的V50。试验得到钨柱破片纵向正侵彻10mm装甲钢的V50为745m/s,横向正侵彻10mm装甲钢的V50为761m/s,钨柱破片在侵彻过程中,破片被横向镦粗,破片头部受靶板挤压磨蚀,形成不规则蘑菇头状翻边。基于试验数据的单一性,通过数值模拟获取了不同着靶姿态下三种典型钨柱(3g、5g、8g)对10mm装甲钢板的V50,并探索了着靶姿态和破片质量对V50变化的影响规律,对比试验与数值模拟结果,两者相对误差在10%左右。研究发现,不同着靶姿态下,钨柱破片侵彻装甲钢的V50存在波动区间,破片纵向正着靶时V50最小,破片以40°~60°着靶姿态角着靶时V50最大,钨柱破片V50与破片迎风面积大致呈正相关,对于3g钨柱破片,最大V50比最小V50上升4.98%,5g破片上升3.51%,8g破片上升2.62%。随着破片质量的增加,钨柱破片穿透装甲钢的V50对着靶姿态越不敏感,V50波动区间越小。
Abstract
In order to provide effective reference data for the design of warhead damage element, it is useful to carry out researches on the effects of the mass of typical column fragment and the target attitude on the ballistic limit velocity (V50) of armor steel. In the condition of a 5g-mass tungsten column with aspect ratio of 1 at 0° and 90° target attitude through ballistic impact test, the V50 of 10mm armor steel was achieved: the V50 of tungsten column fragments penetrating 10mm armor steel in longitudinal direction is 745m/s, and the V50 of tungsten column fragments penetrating 10mm armor steel in transverse direction is 761m/s. In the process of penetration, the tungsten column fragments were upset transversely, and the heads of the fragments were extruded and abrased by the target plate so that the fragment formed a mushroom head-shaped flap. Because of the limitations of the single experimental data, the V50 of three typical tungsten columns (3g, 5g and 8g) penetrating 10mm armor steel in different target attitudes were achieved by using the numerical simulation. And the influence of target attitudes and fragment quality on V50 were also explored. The relative error between the numerical simulation and test results was about 10% through making a comparison. It founds that the V50 of tungsten column penetrating armor steel has fluctuation range under different target attitudes. V50 is the minimum when the fragment is vertically facing the target, and the maximum V50 is the maximum when the fragment is at the target attitudes angle of 40° ~ 60°. The V50 of tungsten column penetrating armor steel is positively correlated with the windward area of the fragment. When 3g tungsten column penetrating armor steel, the maximum of V50 increases by 4.98%, 5g fragment increases by 3.51%, and 8g fragment increases by 2.62% compared with the minimum of V50. The heavier the tungsten column fragment, the less obvious influence of different target attitudes on the V50 of tungsten column fragment penetrating armor steel. At the same time, the fluctuation range of V50 is smaller.
关键词
着靶姿态 /
侵彻 /
弹道极限 /
V50
{{custom_keyword}} /
Key words
Target attitude /
Penetration /
Ballistic limit /
V50
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王树山. 终点效应学[M]. 北京:科学出版社, 2019, 72-111.
[2] 刘鹏飞. 破片特性对冲击起爆B炸药比动能阈值的影响[D]. 中北大学, 2017.1-3.
[3] 陈志斌. 钨合金预制破片对靶板侵彻机理研究[D]. 北京理工大学, 2007.10-18.
[4] 杨益航, 王德志, 林高用, 等. 层状功能材料的研究与发展[J]. 材料导报, 2011, 25(17): 10-13.
Yang Y H, Wang D Z , Lin G Y, et al. Review in research and development of laminated functional material [J]. Materials Review, 2011, 25(17): 10-13.
[5] 戴喜会, 智小琦, 施兵, 等. 长径比及着靶姿态对钨柱极限穿透速度的影响[J]. 弹箭与制导学报, 2012, 32(6): 89-92.
Dai X H, Zhi X Q, Shi B, et al. The influence of aspect ratio and hitting attitude on limit penetration velocity of tungsten cylinder [J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2012, 32(6): 89-92.
[6] 王鹏, 马晓青, 高润芳, 等. 钨柱对装甲钢板侵彻的试验研究[J]. 弹箭与制导学报, 2003, (S1): 147-150.
Wang P, Ma X Q, Gao R F, et al. The experimental analysis of the penetration of the wolfram cylinders at the armored steel [J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2003, (S1): 147-150.
[7] 刘俊, 李文彬. 柱形破片侵彻钢靶数值模拟研究[J]. 机械制造与自动化, 2016, 45(2): 117-120.
Liu J, Li W B. Numerical simulation and study of impact of cylindrical fragment against armor plates [J]. Mechanical Design manufacture and Automation Major, 2016, 45(2): 117-120.
[8] 周捷, 智小琦, 徐锦波, 等. 小尺寸破片对单兵防护装备的侵彻研究[J]. 爆炸与冲击, 2019, 39(2): 78-84.
Zhou J, Zhi X Q, Xu J B, et al. Research on penetration of small size fragment to single soldier protection equipment [J]. Explosion and Shock Waves, 2019, 39(2): 78-84.
[9] 唐昌州. 小尺寸破片对单兵防护装备的侵彻性能研究[D]. 中北大学, 2021.16-18.
[10] 李金福, 智小琦, 范兴华. 钨球及六棱钨柱破片侵彻Q235叠层靶特性研究[J]. 火炮发射与控制学报, 2021, 42(2): 28-33, 39.
Li J F, Zhi X Q, Fan X H. Study on the characteristics of the tungsten ball and hexagonal tungsten prism fragments penetrating q235 laminated targets [J]. Journal of Artillery Launch and Control, 2021, 42(2): 28-33, 39.
[11] 王维占, 赵太勇, 冯顺山, 等. 12.7mm动能弹斜侵彻复合装甲的数值模拟研究[J]. 爆炸与冲击, 2019, 39(12): 78-87.
Wang W Z, Zhao T Y, Feng S S, et al. Numerical simulation of 12.7 mm kinetic energy projectile oblique penetration composite armor [J]. Explosion and Shock Waves, 2019, 39(12): 78-87.
[12] 蒙茂洲. 功能强大的网格生成软件——TrueGrid[J]. CAD/CAM与制造业信息化, 2010(1): 57-60.
Meng M Z. TrueGrid, a powerful grid generation software [J]. Digital Manufacturing Industry, 2010(1): 57-60.
[13] 王晓兵, 王维保, 胡浩,等. 预制钨破片穿甲仿真分析[J]. 中国制造业信息化, 2008(24): 71-72.
Wang X B, Wang W B, Hu H, et al.Numerical simulation of prefabricated tungsten fragment armor-piercing [J]. Manufacture Information Engineering of China, 2008(24): 71-72.
[14] 吴克刚. Al2O3陶瓷板和装甲钢板抗长杆动能弹侵彻效应的实验与数值模拟研究[D]. 国防科学技术大学, 2004.16-20.
[15] 李向东, 杜忠华. 目标易损性[M]. 北京:北京理工大学出版社, 2013, 172-173.
[16] 张国伟. 终点效应及其应用技术[M]. 北京:国防工业出版社, 2006, 51-52.
[17] 徐豫新, 王树山, 伯雪飞, 等. 钨合金球形破片对低碳钢的穿甲极限[J]. 振动与冲击, 2011, 30(5): 192-195.
Xu Y X, Wang S S, Bo X F, et al. Armor-piercing ultimate of tungsten alloy spherical fragment against low-carbon steel [J]. Journal of Vibration and Shock, 2011, 30(5): 192-195.
[18] 郭光全, 郭子云, 雷文星, 等. 杀爆战斗部动态破片威力场分布规律研究[J]. 中北大学学报(自然科学版), 2018, 39(4): 408-414.
Guo G Q, Guo Z Y, Lei W X, et al. Study on the distribution law of dynamic fragment power field of the blast and fragmentation warhead [J]. Journal of North University of China, 2018, 39(4): 408-414.
[19] 侯俊亮, 蒋建伟, 李应波, 等. 杀爆战斗部破片和冲击波对目标的耦合作用[J]. 火炸药学报, 2020, 43(3): 335-340.
Hou J L, Jiang J W, Li Y B, et al. Study on the coupling effect of fragments and shock wave of the blast-fragmentation warhead on typical targets [J]. Chinese Journal of Explosives, 2020, 43(3): 335-340.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}