服役条件下提速地铁车辆的横向运动稳定性研究

吴俊汉1,2,文永蓬1,2,3,宗志祥4,周月1,2,董昊亮1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 304-312.

PDF(3199 KB)
PDF(3199 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 304-312.
论文

服役条件下提速地铁车辆的横向运动稳定性研究

  • 吴俊汉1,2,文永蓬1,2,3,宗志祥4,周月1,2,董昊亮1,2
作者信息 +

Lateral motion stability of speed-up metro vehicles under service conditions

  • WU Junhan1,2, WEN Yongpeng1,2,3, ZONG Zhixiang4, ZHOU Yue1,2, DONG Haoliang1,2
Author information +
文章历史 +

摘要

地铁提速是未来轨道交通发展的必然趋势,服役条件下的车轮磨损会导致车轮半径减小和等效锥度增大,容易造成车辆蛇行失稳。为了保持服役条件下提速地铁车辆的横向运动稳定性,通过调研获取了上海某线路地铁车辆的车轮磨损情况,建立了含抗蛇行减振器的地铁横向动力学模型,研究了车轮磨损对于地铁车辆横向运动稳定性的影响,对比服役条件下有无抗蛇行减振器的车辆临界速度,指明了安装抗蛇行减振器对于服役地铁提速的必要性。结果表明:服役条件下的地铁车辆车轮半径减小以及等效锥度增大会降低车辆的临界速度,增大蛇行运动幅值。通过安装抗蛇行减振器,能有效地解决地铁车辆车轮磨损以及提速带来的横向运动稳定性裕量不足的问题,同时也能避免地铁车辆在异常参数匹配下发生一次蛇行运动。论文工作对探究服役地铁车辆进一步提速以及车轮和钢轨的维护保养具有一定的参考价值。

Abstract

The improvement of metro speed is the inevitable trend of rail transit development in the future. Wheel wear under service conditions will decrease the wheel radius and increase the equivalent conicity, which is prone to occur vehicle hunting instability.To maintain the lateral motion stability of the accelerated metro vehicles under service conditions, the wheel wear of metro vehicles on a certain line in Shanghai was obtained through investigation. The 17-DOF lateral dynamic model of metro vehicles with anti-yaw damper was established to study the influence of wheel wear on the lateral motion stability of metro vehicles. Comparison of the hunting critical velocity of vehicles with or without anti-yaw damper pointed out the necessity of installing anti-yaw damper for improving themetro speed under service conditions. It is shown that the decrease of wheel radius and the increase of equivalent conicity of metro vehicles under service conditions will reduce the critical velocity and increase the camplitude of hunting motion.The installation of anti-yaw damper can fundamentally solve the problem of insufficient lateral motion stability margin caused by wheel wear and speed increase of metro vehicles, it can also avoid the primary hunting motion of metro vehicles under abnormal parameter matching at the same time. The work of this paper has a certain reference value for improving themetro speed under service conditions and the maintenance of wheels and rails.

关键词

地铁车辆 / 蛇行运动 / 等效锥度 / 抗蛇行减振器 / 横向运动稳定性

Key words

metro vehicles / hunting motion / equivalent conicity / anti-yaw damper / lateral stability

引用本文

导出引用
吴俊汉1,2,文永蓬1,2,3,宗志祥4,周月1,2,董昊亮1,2. 服役条件下提速地铁车辆的横向运动稳定性研究[J]. 振动与冲击, 2023, 42(3): 304-312
WU Junhan1,2, WEN Yongpeng1,2,3, ZONG Zhixiang4, ZHOU Yue1,2, DONG Haoliang1,2. Lateral motion stability of speed-up metro vehicles under service conditions[J]. Journal of Vibration and Shock, 2023, 42(3): 304-312

参考文献

[1] 翟婉明,赵春发.现代轨道交通工程科技前沿与挑战[J].西南交通大学学报,2016,51(02):209-226.
ZHAI Wanming, ZHAO Chunfa.Frontiers and Challenges of Sciences and Technologies in Modern Railway Engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(02):209-226.
[2] 朱海燕,曾庆涛,王宇豪,等.高速列车动力学性能研究进展[J].交通运输工程学报,2021,21(03):57-92.
ZHU Haiyan, ZENG Qingtao, WANG Yuhao, et al. Research Progress in Dynamics Performance of High-Speed Train[J]. Journal of Traffic and Transportation Engineering, 2021,21(03):57-92.
[3] 石怀龙,罗仁,曾京.国内外高速列车动力学评价标准综述[J].交通运输工程学报,2021,21(01):36-58.
SHI Huailong, LUO Ren, ZENG Jing. Review on Domestic and Foreign Dynamics evaluation Criteria of High-Speed Train[J]. Journal of Traffic and Transportation Engineering, 2021,21(01):36-58.
[4] Zhang T, Hans True, Dai H. The lateral dynamics of a nonsmooth railway wheelset model[J]. International Journal of Bifurcation and Chaos,2018,28(8): 1850095.
[5] Yan Y, Zeng J. Hopf bifurcation analysis of railway bogie[J]. Nonlinear Dynamics, 2017, 92(1): 107–117.
[6] Yan Y, Zeng J. Huang C, et al. Bifurcation analysis of railway bogie with yaw damper[J]. Archive of Applied Mechanics, 2019, 89(7):1185-1199.
[7] DONG H, ZENG J, XIE J, et al. Bifurcation\instability forms of high speed railway vehicles[J]. Science China (Technological Sciences),2013,56(07):1685-1696.
[8] Zhang T, Dai H. On the nonlinear dynamics of a high-speed railway vehicle with nonsmooth elements[J]. Applied Mathematical Modelling, 2019, 76:526-544.
[9] 姜培斌,凌亮,丁鑫,等.考虑车体刚柔耦合振动的高速铁路轨道不平顺敏感波长研究[J].振动与冲击, 2021,40(15):79-89.
JIANG Peibin, LING Liang, DING Xing, et al. Track irregularity sensitive wavelengths of high-speed railway
considering flexible vibration of vehicle body[J]. Journal of Vibration and Shock, 2021,40(15):79-89.
[10] Zeng J, Wu P. Stability Analysis of High Speed Railway Vehicles[J]. JSME International Journal Series C, 2004, 47(2):464-470.
[11] 李凡松, 王建斌, 石怀龙,等.动车组车体异常弹性振动原因及抑制措施研究[J].机械工程学报,2019,55(12): 178-188.
LI Fansong, WANG Jianbin, SHI Huailong, et al. Research on Causes and Countermeasures of Abnormal Flexible Vibration of Car Body for Electric Multiple Units[J]. Journal of Mechanical Engineering, 2019,55(12): 178-188.
[12] 宫岛,刘广宇,周劲松,等.动车组车体异常振动问题分析及治理研究[J].机械工程学报,2021,57(10): 95-105+117.
GONG Dao, LIU Guangyu, ZHOU Jinsong, et al. Research on Abnormal Vibration Issue of Car Bodies of EMU Trains and Its Treatment[J]. Journal of Mechanical Engineering, 2021,57(10): 95-105+117.
[13] 滕万秀,罗仁,石怀龙,等.高寒动车组-40℃环境下动力学性能[J].机械工程学报,2019,55(04):148-153.
TENG Wanxiu, LUO Ren, SHI Huailong, et al.Dynamics Behaviour of High-speed Train at the Low Temperature of -40 ℃[J]. Journal of Mechanical Engineering, 2019,55 (04):148-153.
[14] 张卫华,李艳,宋冬利.高速列车运动稳定性设计方法研究[J].西南交通大学学报,2013,48(01):1-9.
ZHANG Weihua, LI Yan, SONG Dongli. Design Methods for Motion Stability of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2013,48(01):1-9.
[15] 李响,任尊松,徐宁.基于转向架悬挂参数与踏面锥度优化的高速车辆动力学性能分析[J].铁道学报, 2018, 40(03): 39-44.
LI Xiang, REN Zunsong, XU Ning. Dynamic Performance Analysis of High-speed Vehicle Based on Optimization of Bogie Suspension Parameters and Tread Conicity[J].  Journal of the China Railway Society, 2018, 40(03): 39-44.
[16] 罗仁.铁道车辆系统动力学及应用[M].西南交通大学出版社,2018.
LUO Ren. Dynamics of Railway Vehicle Systems and Application[M].Southwest Jiaotong University Press,2018.
[17] Shi H, Luo R, Guo J. Improved lateral-dynamics-intended railway vehicle model involving nonlinear wheel/rail interaction and car body flexibility[J]. Acta Mechanica Sinica, 2021(9).
[18] 翟婉明.车辆-轨道耦合动力学[M].科学出版社,2015.
ZHAI Wanming. Vehicle-Track coupling Dynamics[M]. Science Press,2015.
[19] 任尊松.车辆系统动力学[M].中国铁道出版社有限公司,2019.
REN Zunsong. Dynamics of Railway Vehicle Systems[M]. China Railway Publishing House CO., LTD,2019.
[20] 尹波润,文永蓬,尚慧琳. 基于元胞自动机方法的地铁车轮磨损动态建模与仿真[J]. 机械工程学报, 2019,55(02):135-146.
YIN Borun, WEN Yongpeng, SHANG Huilin. Dynamic modeling and simulation of metro wheel wear based on cellular automata method[J]. Journal of Mechanical Engineering, 2019,55(02):135-146.
[21] 白瑾瑜,曾京,石怀龙,等.抗蛇行减振器对高速列车稳定性的影响[J].振动与冲击,2020,39(23):78-83.
BAI Jinyu, ZENG Jing, SHI Huailong, et al. Effects of Anti-hunting Shock Absorber on Stability of High-Speed Train[J]. Journal of Vibration and Shock, 2020, 39(23): 78-83.
[22] 干锋,戴焕云,高浩,等.铁道车辆不同踏面等效锥度和轮轨接触关系计算[J].铁道学报,2013,35(09):19-24.
Gan Feng, Dai Huanyun, Gao Hao, et al. Calculation of Equivalent Conicity and Wheel-rail Contact Relationship of Different Railway Vehicle Treads[J]. Journal of the China Railway Society, 2013,35(09):19-24.
[23] 陆文教,陶功权,王鹏,等.地铁车轮磨耗对轮轨接触特性及动力学性能的影响[J].工程力学,2017,34(08):222-231.
LU Wenjiao, TAO Gongquan, WANG Peng, et al. Influence of Wheel Wear on Wheel-Rail Contact Behavior and Dynamic Performance of Metro Vehicle[J]. Engineering Mechanics,2017,34(08):222-231.
[24] 孙建锋,池茂儒,吴兴文,等.抗蛇行减振器参数对车辆稳定性的影响分析[J].振动.测试与诊断, 2018, 38(06): 1155-1160+1291.
SUN Jianfeng, CHI Maoru, WU Xingwen, et al. Analysis of the Influences of the Yaw Damper Parameters on the Vehicle Stability[J]. Journal of Vibration, Measurement & Diagnosis, 2018,38(06):1155-1160+1291.
[25] 姚远,程俊,张名扬,等.高速列车抗蛇行减振器作用机制与频变刚度应用研究[J/OL].振动工程学报:1-10[2021-12-03].http://kns.cnki.net/kcms/detail/32.1349.TB.20210929.1639.002.html.
YAO Yuan, CHENG Jun, ZHANG Mingyang, et al.Mechanism analysis of yaw damper in high-speed train and frequencydependent stiffness application[J/OL]. Journal of Vibration Engineering:1-10[2021-12-03]. http://kns.cnki.net/kcms/detail/32.1349.TB.20210929.1639.002.html.
[26] 姚远,许振飞,宋亚东,等.基于涡激振动的动车组隧道内列尾横向晃动机理[J].交通运输工程学报, 2021, 21(05): 114-124.
YAO Yuan, XU Zhenfei, SONG Yadong, et al. Mechanism of train tail lateral sway of EMUs in tunnel based on vortex-induced vibration[J]. Journal of Traffic and Transportation Engineering,2021,21(05):114-124.

PDF(3199 KB)

Accesses

Citation

Detail

段落导航
相关文章

/