振动台与偏心负载相互作用的机理研究

王巨科1,李小军2,刘爱文1,陈苏2,傅磊1,李芳芳3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 330-338.

PDF(2877 KB)
PDF(2877 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 330-338.
论文

振动台与偏心负载相互作用的机理研究

  • 王巨科1,李小军2,刘爱文1,陈苏2,傅磊1,李芳芳3
作者信息 +

Mechanism of interaction between shaking table and eccentric load

  • WANG Juke1, LI Xiaojun2, LIU Aiwen1, CNEN Su2, FU Lei1, LI Fangfang3
Author information +
文章历史 +

摘要

为研究振动台与偏心负载的相互作用机理,构建了振动台与偏心负载的传递函数矩阵,研究了负载与振动台的质量比、转动惯量比,以及负载重心和激振器分别至振动台台面中心距离的比(偏心距离比)对传递函数矩阵的影响。结果表明:质量比对传递函数矩阵的影响最大,偏心距离比次之,转动惯量比最小。由于振动台-负载相互作用的影响,振动台的有效工作频段下降了71.13%,两激振器间的耦合作用被放大了至少37.15倍。基于以上研究,提出了一种实时补偿控制策略的拓展形式,并分别从频域和时域角度分析了所提策略的有效性。分析表明:两个激振器复现地震动记录的波形相关系数分别提升了14.04%和4.78%,所提出的控制策略能够很好地补偿振动台与偏心负载间的相互作用。

Abstract

 A transfer function matrix (TFM) is established to study the interaction mechanism between shaking table and eccentric load. The effects of mass ratio between eccentric load and shaking table, the moment of inertia ratio between eccentric load and shaking table, and the ratio of the distance from the center of gravity of load to the center of the shaking table to the distance from the exciter to the center of shaking table (eccentric distance ratio) on the TFM are investigated. The results show that the TFM is most sensitive to the change of the mass ratio, followed by the eccentric distance ratio and the moment of inertia ratio. Under the influence of the interaction between the shaking table and eccentric load, the effective frequency band of the shaking table decreases 71.13%, and the coupling between two exciters is amplified at least 37.15 times. Based on the above research, an extended form of real-time feedback control compensation strategy is proposed, and the effectiveness validation of the strategy in both frequency and time domain are conducted. The results show that the correlation coefficient of ground motion record of two exciters is improved by 14.04% and 4.78% respectively, and the strategy can compensate the interaction between shaking table and eccentric load effectively.

关键词

振动台 / 偏心负载 / 振动台-负载相互作用 / 影响研究 / 实时补偿

Key words

shaking table / eccentric load / shaking table-load interaction / influence investigation / real-time compensation

引用本文

导出引用
王巨科1,李小军2,刘爱文1,陈苏2,傅磊1,李芳芳3. 振动台与偏心负载相互作用的机理研究[J]. 振动与冲击, 2023, 42(3): 330-338
WANG Juke1, LI Xiaojun2, LIU Aiwen1, CNEN Su2, FU Lei1, LI Fangfang3. Mechanism of interaction between shaking table and eccentric load[J]. Journal of Vibration and Shock, 2023, 42(3): 330-338

参考文献

[1] 黄浩华. 地震模拟振动台的设计与应用技术[M]. 北京: 地震出版社, 2008.
HUANG Haohua. Design and application of the shaking table [M]. Beijing: Seismological Press, 2008.
[2] 王巨科,李小军,李芳芳,等. 单向双轴振动台与结构相互作用的影响及补偿[J]. 振动与冲击, 2021, 40(10): 140-149.
WANG Juke,LI Xiaojun,LI Fangfang, et al. Effect and compensation of the interaction between a unidirectional twin-axis shaking table and the tested structure [J]. Journal of Vibration and Shock, 2021, 40(10): 140-149.
[3] WANG Juke,LI Xiaojun,LI Fangfang, et al. Analysis of the interaction effects between double shaking tables and test structure [J]. Journal of Vibration and Control, 2021, 27(11-12): 1407-1419.
[4] KIM J W, XUAN D J and KIM Y B. Design of a forced control system for a dynamic road simulator using QFT [J]. International Journal of Automotive Technology, 2008, 9(1): 37-43.
[5] CLAUDIO P. Vibration tests on the preloaded LARES satellite and separation system [J]. Aerospace Science and Technology, 2015, 42(4): 470-476.
[6] 闫飞越. 电液伺服平面冗余驱动机构结构优化及控制研究[D]. 哈尔滨工业大学, 2015.
YAN Feiyue. Structural optimization and control study of electro-hydraulic servo planar redundant mechanism [D]. Harbin Institute of Technology, 2015.
[7] ZHAO Jinsong, WANG Zhipeng, ZHANG Chuanbi, et al. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling [J]. ISA Transactions, 2018, 77: 201-221.
[8] 张传笔. 二自由度伺服振动台偏心负载模态解耦控制研究[D]. 燕山大学, 2019.
ZHANG Chuanbi. Research on modal decoupling control of 2-DOF servo vibrator with eccentric load [D]. Yanshan University, 2019.
[9] 樊强. 多轴冗余振动台的模态与自由度复合控制策略研究[D]. 哈尔滨工业大学, 2017.
FAN Qiang. Combination of modal and degree control strategy study of redundant multi-axis shaking table [D]. Harbin Institute of Technology, 2017.
[10] 魏巍. 冗余多轴振动台耦合特性分析及其控制策略研究[D]. 哈尔滨工业大学, 2015.
WEI Wei. Coupling analysis and its control strategy of redundant multi-axis shaking table [D]. Harbin Institute of Technology, 2015.
[11] 谢子东. 基于模型的多轴振动台动力学解耦控制研究[D].哈尔滨工业大学, 2017.
XIE Zidong. Decoupling control for multi-axis seismic testing table based on the dynamic model [D]. Harbin Institute of Technology, 2017.
[12] ZHANG Lianpeng, CONG Dacheng. YANG Zhidong, et al. Attitude synchronous tracking control of double shaking tables based on hybrid fuzzy logic cross-coupled controller and adaptive inverse controller [J]. Journal of Intelligent and Fuzzy System, 2015, 29(6): 2537-2546.
[13] Tsuruta K, Ojiro T, Ushimi N, et al. Vibration suppression control for multiaxis table drive system [C] // Proceeding of the 2013 IEEE International Conference on Mechatronics & Automation. Takamatsu, Japan, 2013: 1135-1140.
[14] Tsuruta K, Ojiro T, Honda H. Synchronization control for twin-axes table drive system [C] // Proceeding of the IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. Yokohama, Japan, 2015: 005162-005167.
[15] 郭彦林, 霍轶力. CCTV新台址主楼抗震性能研究[J]. 建筑结构学报, 2008, 4(03): 10-23.
GUO Yanlin, HUO Yili. Analysis on earthquake response and aseismic load carrying capability of New CCTV Building [J]. Journal of Building Structures, 2008, 4(03): 10-23.
[16] SHEN Gang, ZHU Zhencai, LI Xiang, et al. Real-time electro-hydraulic hybrid system for structural testing subjected to vibration and force loading [J]. Mechatronics, 2016, 33: 49-70.

PDF(2877 KB)

601

Accesses

0

Citation

Detail

段落导航
相关文章

/