曲梁缓冲器的大变形及变形能的椭圆函数解

霍银磊1,2,裴学胜2,李梦瑶1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 43-49.

PDF(1411 KB)
PDF(1411 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 43-49.
论文

曲梁缓冲器的大变形及变形能的椭圆函数解

  • 霍银磊1,2 ,裴学胜2,李梦瑶1
作者信息 +

Elliptic function solutions to large deformation and deformation energy of curved beam buffer

  • HUO Yinlei1,2, PEI Xuesheng2, LI Mengyao1
Author information +
文章历史 +

摘要

金属曲梁结构在发生大变形情况下仍然具有良好的回弹性能,可以用作承受重复冲击的系统的冲击能量吸收装置。针对由固支圆形曲梁组成的缓冲器,推导了基于半径和截面角的固支曲梁的大变形平衡方程。给出了端部压力及平板压力作用下曲梁的截面角、位形及变形能的Jacobi椭圆函数解,详细分析了简支圆形曲梁缓冲器的大变形特性及能量吸收特性。结果表明曲梁缓冲器具有明显的非线性大变形特性和良好的缓冲吸能特性,其缓冲系数曲线有明显的极小值点;缓冲系数的极小值取决于曲梁材料、曲率半径及初始安装角度,与其数量无关。

Abstract

Due to the good resilience even in the case of large deformation, the metal curved beam structure can be used as a shock energy absorption device for the system subjected to repeated shocks. In this paper, the large deformation equilibrium equation of the energy absorber formed from clamped circular curved beams is derived based on the radius and section angle of curved beam. A Jacobi elliptic function solutions of section angle, configuration and deformation energy of general curved beam and curved beam between plates are given. The large deformation characteristics and energy absorption characteristics of curved beam are analyzed in detail. The results show that the curved beam structure has obvious nonlinear large deformation characteristics and good energy absorption characteristics, there are obvious minimum point on the cushion coefficient curve, and the cushion coefficient and the minimum point depend on the material, the radius of curvature and the initial installation angle of the curved beam, and has nothing to do with its quantity.
Key words: curved beam structure; elliptic function; large deformation; cushioning performance

关键词

曲梁结构 / 椭圆函数 / 大变形 / 缓冲性能

Key words

curved beam structure / elliptic function / large deformation / cushioning performance

引用本文

导出引用
霍银磊1,2,裴学胜2,李梦瑶1. 曲梁缓冲器的大变形及变形能的椭圆函数解[J]. 振动与冲击, 2023, 42(3): 43-49
HUO Yinlei1,2, PEI Xuesheng2, LI Mengyao1. Elliptic function solutions to large deformation and deformation energy of curved beam buffer[J]. Journal of Vibration and Shock, 2023, 42(3): 43-49

参考文献

[1] 罗瑜莹, 肖生苓, 李琛,等. 植物纤维多孔缓冲包装材料的研究现状与展望[J]. 包装工程, 2016, 037(7):17-22.
LUO Yu-ying, XIAO Sheng-ling, LI Chen, MU Li-xin. Status and Trends of Researches on Plant Fiber Porous Cushioning Packaging Materials[J]. Packaging Engineering, 2016, 037(7):17-22.
[2] Huy-Tuan Pham, Dung-An Wang. A constant-force bistable mechanism for force regulation and overload protection[J]. Mechanism and Machine Theory, 2011, 46 (7): 899-909.
[3] 肖龙江,黄建亮. 小初始挠度两端固支屈曲梁的非线性动力学分析[J]. 振动与冲击, 2020, 39(6): 161-166.
XIAO Long-jiang, HUANG Jian-liang. Nonlinear dynamics of a fixed-fixed buckled beam with low initial deflection. Journal of Vibration and Shock, 2020, 39(6): 161-166.
[4] 王云峰,吴爽,李占芯等. 基于主动阻尼的屈曲梁准零刚度隔振技术研究[J]. 振动与冲击, 2021, 40(8): 79-84.
WANG Yun-feng, WU Shuang, LI Zhan-xin, et al. A study on vibration isolation based on a buckled beam quasi-zero-stiffness isolator and active damping. Journal of Vibration and Shock, 2021, 40(8): 79-84.
[5] 任晨辉,杨德庆. 船用新型多层负刚度冲击隔离器性能分析[J]. 振动与冲击, 2018, 37(20): 81-87.
REN Chen-hui, YANG De-qing. Characteristics of a novel multilayer negative stiffness shock isolation system for a marine structure. Journal of Vibration and Shock, 2018, 37(20): 81-87.
[6] 黄修长,徐时吟,蒋爱华等. 曲梁周期结构隔振器特性研究[J]. 振动与冲击, 2012, 31(5): 171-175.
Huang Xiu-chang, Xu Shi-yin, Jiang Ai-hua, et al. Dynamic properties of periodic isolator composed of curved beams. Journal of Vibration and Shock, 2012, 31(5): 171-175.
[7] 李万春,滕兆春. 变曲率FGM拱的面内自由振动分析[J]. 振动与冲击, 2017, 36(9): 201-208.
LI Wan-chun, TENG Zhao-chun. In-plane free vibration analysis of FGM arches with variable curvature. Journal of Vibration and Shock, 2017, 36(9): 201-208.
[8] 松田技術研究所. 防震器(金属球状)[EB/OL]. http://www.mrd-matsuda.co.jp/airsus_metal.html.(in Japanese)
Matsuda R&D co., LTD. Shock absorber (metal ball) [EB/OL]. http://www.mrd-matsuda.co.jp/airsus_ metal.html.
[9] Born M. Untersuchungen über die Stabilität der elastischen Linie in Ebene und Raum unter verschiedenen Grenzbedingungen[D]. University of Gottingen.1906.
[10] Howell L L. Compliant Mechanisms[M]. Wiley-Interscience, New York, 2001.
[11] Kimball C, Tsai L W. Modeling of Flexural Beams Subjected to Arbitrary End Loads[J]. Journal of Mechanical Design, 2002, 124(2) :223–235.
[12] Zakharov Y V, Okhotkin K G. Nonlinear Bending of thin Elastic Rods[J]. Journal of Applied Mechanics & Technical Physics, 2002, 43(5):739-744.
[13] Zakharov Y V, Okhotkin K G, Skorobogatov A D. Bending of Bars under a Follower Load[J]. Journal of Applied Mechanics and Technical Physics, 2004, 45(5):756-763.
[14] Levyakov S V, Kuznetsov V V. Stability analysis of planar equilibrium configurations of elastic rods subjected to end loads[J]. Acta Mechanica, 2010, 211(1-2):73-87.
[15] Batista M. Analytical treatment of equilibrium configurations of cantilever under terminal loads using Jacobi elliptical functions[J]. International Journal of Solids & Structures, 2014, 51(13):2308-2326.
[16] 乌榕江. 柔性梁大挠度问题的完备椭圆函数解及应用[D]. 西安电子科技大学,2017.
WU Rong-Jiang. Comprehensive Elliptical Functions Solution to Large-Deflection Problems of Flexible Beams and Application[D]. Xidian University, 2017.
[17] Holst G L, Teichert G H, Jensen B D. Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms[J]. Journal of Mechanical Design, 2011, 133(5):051002-1-10.
[18] 张爱梅. 平面梁大挠度非线性问题的完备解与柔顺机构精确建模[D]. 西安电子科技大学, 2013.
ZHANG Ai-mei. Comprehensive Solution to Nonlinear Large-Deflection Problems of Planar Beams and Accurate Modeling of Compliant Mechanisms [D]. Xidian University, 2013.
[19] Lin K C, Hsieh C M. The closed form general solutions of 2-D curved laminated beams of variable curvatures[J]. Composite Structures, 2007, 79(4): 606- 618.
[20] Lin K C, Lin C W, et al. Finite Deformation of 2-D Curved Beams with Variable Curvatures[J]. Journal of Solid Mechanics & Materials Engineering, 2009, 3(6): 876-886.
[21] Lin K C, Lin C W. Finite deformation of 2-D laminated curved beams with variable curvatures[J]. International Journal of Non-Linear Mechanics, 2011, 46(10):1293 -1304.
[22] 蔡松柏, 沈蒲生. 大转动平面梁有限元分析的共旋坐标法[J]. 工程力学, 2006, 23(z1):69-72.
CAI Song-bai, SHEN Pu-sheng. Co-Rotational procedure for finite element analysis of plane bean under large rotational displacement[J]. Engineering Mechanics, 2006, 23(z1):69-72.
[23] 李世荣, 宋曦, 周又和. 弹性曲梁几何非线性精确模型及其数值解[J]. 工程力学, 2004, 21(2):129-129.
LI Shi-rong, SONG Xi,ZHOU You-he. Exact geometrically nonlinear mathematical formulation and numerical simulation of curved beams[J]. Engineering Mechanics, 2004, 21(2):129-129.
[24] 彭国勋. 运输包装[M]. 印刷工业出版社, 北京, 1999.
PENG Guo-xun. Transport package[M]. Printing Industry Press, Beijing,1999.

PDF(1411 KB)

323

Accesses

0

Citation

Detail

段落导航
相关文章

/