自适应UPEMD-MCKD轴承故障特征提取方法

宋宇博1,刘运航1,朱大鹏2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 83-91.

PDF(2321 KB)
PDF(2321 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (3) : 83-91.
论文

自适应UPEMD-MCKD轴承故障特征提取方法

  • 宋宇博1,刘运航1,朱大鹏2
作者信息 +

Adaptive UPEMD-MCKD rolling bearing fault feature extraction method

  • SONG Yubo1, LIU Yunhang1, ZHU Dapeng2
Author information +
文章历史 +

摘要

为了准确提取强噪声背景下较微弱的轴承故障特征信息,结合均相经验模态分解(Uniform Phase Empirical Mode Decomposition, UPEMD)和最大相关峭度解卷积方法(Maximum Correlated Kurtosis Deconvolution, MCKD)的优势,提出了一种自适应UPEMD-MCKD轴承故障特征提取方法。该方法将样本熵和峭度指标相结合构建最小熵峭比,采用遗传算法对最小熵峭比的最小值进行搜索,以确定移位数、滤波器长度和周期的最佳参数组合。经均相模态分解方法预处理的含噪信号通过相关性计算选取有效分量进行信号重构,重构信号借助最佳参数组合下的MCKD算法提取故障特征。内圈故障和外圈故障的实例分析表明,所提方法借助UPEMD的噪声抑制能力和最小熵峭比的参数组合寻优评价能力,能够从故障信号中有效的提取出微弱的故障特征。

Abstract

at the difficulty of extracting weak fault signals of bearings under strong noise background, combined with the advantages of Uniform Phase Empirical Mode Decomposition and Maximum Correlated Kurtosis Deconvolution method, an adaptive UPEMD-MCKD bearing fault feature extraction method was proposed.The minimum entropy kurtosis ratio was constructed by combining sample entropy and kurtosis index, and the minimum entropy kurtosis ratio was searched by genetic algorithm to obtain the optimal parameter combination of shift number, filter length and period.The noise signals preprocessed by Uniform Phase Empirical Mode Decomposition method were screened out by correlation calculation for signal reconstruction, and fault features were extracted from reconstructed signals by MCKD algorithm under optimal parameter combination.The analysis of inner and outer ring faults shows that the proposed method can effectively extract weak fault features from fault signals by virtue of UPEMD's noise suppression ability and minimum entropy ratio parameter combination optimization evaluation ability.

关键词

强噪声 / 滚动轴承 / 均相模态分解 / 遗传算法 / 最大相关峭度解卷积 / 特征提取

Key words

Strong noise / rolling bearing / uniform phase empirical mode decomposition(UPEMD) / genetic algorithm / maximum correlated kurtosis deconvolution(MCKD) / feature extraction

引用本文

导出引用
宋宇博1,刘运航1,朱大鹏2. 自适应UPEMD-MCKD轴承故障特征提取方法[J]. 振动与冲击, 2023, 42(3): 83-91
SONG Yubo1, LIU Yunhang1, ZHU Dapeng2. Adaptive UPEMD-MCKD rolling bearing fault feature extraction method[J]. Journal of Vibration and Shock, 2023, 42(3): 83-91

参考文献

[1] 刘湘楠,赵学智,上官文斌. 强背景噪声振动信号中滚动轴承故障冲击特征提取[J]. 振动工程学报, 2021, 34(01): 202-210.
LIU Xiang-nan, ZHAO Xue-zhi, SHANGGUAN Wen-bin. The impact features extraction of rolling bearing under strong background noise [J]. Journal of Vibration Engineering, 2021, 34(01): 202-210.
[2] 唐贵基,蔡  伟. 应用小波包和包络分析的滚动轴承故障诊断[J]. 振动、测试与诊断, 2009, 29(02): 201-204+244.
TANG Gui-ji, CAI Wei. Rolling bearings fault diagnosis by using wavelet packet and envelope analysis [J]. Journal of Vibration, Measurement and Diagnosis, 2009, 29(02): 201-204+244.
[3] 陈志新,徐金梧,杨德斌. 基于复小波块阈值的降噪方法及其在机械故障诊断中的应用[J]. 机械工程学报, 2007(06): 200-204.
CHEN Zhi-xin, XU Jin-wu, YANG De-bin, Denoising method of block thresholding based on DT-CWT and its application in mechanical fault diagnosis [J]. Journal of Mechanical Engineering, 2007(06): 200-204.
[4] Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[5] Ryan D, Kaiser J F. The use of a masking signal toimprove empirical mode decomposition [C]// Interna-tional Conference on Acoustic, Speech and Signal Pro-cessing 2005 IEEE. MA, USA: MIT Press, 2005: 485-488.
[6] 李  华,刘  韬,伍  星,等. EEMD和优化的频带熵应用于轴承故障特征提取[J]. 振动工程学报, 2020, 33(02): 414-423.
LI Hua, LIU Tao, WU Xing,et al. EEMD and optimized frequency band entropy for fault feature extraction of bearings [J]. Journal of Vibration Engineering, 2020, 33(02): 414-423.
[7] 王  威,陈熙源. 基于改进掩膜EMD的光纤陀螺振动信号处理方法[J]. 东南大学学报(自然科学版), 2018, 48(06): 1123-1129.
WANG Wei, CHEN Xi-yuan. Vibration signal processing method of FOG based on improved EMD with masking signal [J]. Journal of Southeast University (Natural Science Edition), 2018, 48(06): 1123-1129.
[8] Wang Y H, Hu K, Lo M. Uniform phase empirical mode decomposition: An optimal hybridization of masking signal and ensemble approaches [J]. IEEE Access, 2018, 06: 34819-34833.
[9] WIGGINS R A. Minimum entropy deconvolution [J]. Geophysical Prospecting for Petrole, 1980, 16(1): 21-35.
[10] McDonald G L, Zhao Q, Zuo M J. Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection [J]. Mechanical Systems and Signal Processing, 2012,33:237-255.
[11] 王新刚,王  超,韩凯忠. 基于优化VMD和MCKD的滚动轴承早期故障诊断方法[J]. 东北大学学报(自然科学版), 2021, 42(03): 373-380+388.
WANG Xin-gang, WANG Chao, HAN Kai-zhong. Early fault diagnosis method of rolling bearings based on optimization of VMD and MCKD [J]. Journal of Northeastern University (Natural Science), 2021, 42(03): 373-380+388.
[12] 祝小彦,王永杰. 基于自相关分析与MCKD的滚动轴承早期故障诊断[J]. 振动与冲击, 2019, 38(24): 183-188.
ZHU Xiao-yan, WANG Yong-jie. A method of incipient fault diagnosis of bearings based on autocorrelation analysis and MCKD [J]. Journal of Vibration and Shock, 2019, 38(24): 183-188.
[13] 张  俊,张建群,钟  敏,等. 基于PSO-VMD-MCKD方法的风机轴承微弱故障诊断[J]. 振动、测试与诊断, 2020, 40(02): 287-296+418.
ZHANG Jun, ZHANG Jian-qun, ZHONG Min,et al. PSO-VMD-MCKD based fault diagnosis for incipient damage in wind turbine rolling bearing [J]. Journal of Vibration, Measurement and Diagnosis, 2020, 40(02): 287-296+418.
[14] 杨  斌,张家玮,樊改荣,等. 最优参数MCKD与ELMD在轴承复合故障诊断中的应用研究[J]. 振动与冲击, 2019, 38(11): 59-67.
YANG Bin, ZHANG Jia-wei, FAN Gai-rong,et al. Application of MCKD and ELMD in bearing compound fault diagnosis [J]. Journal of Vibration and Shock, 2019, 38(11): 59-67.
[15] Richman J S, Moorman J R. Physiological time-series analysis using approximate entropy and sample entropy [J]. American journal of physiology. Heart and circulatory physiology, 2000, 278(6): 2039-2049.
[16] 胡爱军,赵  军,孙尚飞,等. 基于相关峭度共振解调的滚动轴承复合故障特征分离方法[J]. 振动与冲击, 2019, 38(08): 110-116.
HU Ai-jun, ZHAO Jun, SUN Shang-fei,et al. A composite fault feature separation method of rolling bearing based on correlation kurtosis resonance demodulation [J]. Journal of Vibration and Shock, 2019, 38(08): 110-116.
[17] 何大阔,王福利,贾明兴. 遗传算法初始种群与操作参数的均匀设计[J]. 东北大学学报, 2005(09): 828-831.
He Da-kuo, WANG Fu-li, JIA Ming-xing. Uniform design of initial population and operational parameters for genetic algorithm [J]. Journal of Northeastern University (Natural Science), 2005(09): 828-831.
[18] 吕中亮,汤宝平,周  忆,等. 基于网格搜索法优化最大相关峭度反卷积的滚动轴承早期故障诊断方法[J]. 振动与冲击, 2016, 35(15): 29-34.
LU Zhong-liang, TANG Bao-ping, ZHOU Yi.et al. Rolling bearing early fault diagnosis based on maximum correlated kurtosis deconvolution optimized with grid search algorithm [J]. Journal of Vibration and Shock, 2016, 35(15): 29-34.

PDF(2321 KB)

429

Accesses

0

Citation

Detail

段落导航
相关文章

/