含屈曲约束连接件的钢框架节点抗震性能研究

冯玉龙1,2,温昊1,种迅1,2,蒋庆1,2,朱毅1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 126-136.

PDF(3477 KB)
PDF(3477 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 126-136.
论文

含屈曲约束连接件的钢框架节点抗震性能研究

  • 冯玉龙1,2,温昊1,种迅1,2,蒋庆1,2,朱毅1
作者信息 +

A study on seismic performance of steel frame joints with buckling-restrained connectors

  • FENG Yulong1,2,WEN Hao1,CHONG Xun1,2,JIANG Qing1,2,ZHU Yi1
Author information +
文章历史 +

摘要

基于屈曲约束和损伤控制的思想,提出了一种含屈曲约束连接件的钢框架节点,连接件的一对核心板传递翼缘轴力并平衡梁端弯矩,对核心板设置了由约束板、填充板和梁外伸翼缘组成的屈曲约束系统。对有无设置约束板的两个试件进行了低周往复荷载试验,分析了节点的滞回曲线、骨架曲线、能量耗散和应变分布,考察了约束板对节点滞回性能的影响;采用有限元软件ABAQUS对该节点进行了数值模拟,研究了核心板螺栓和厚度对该节点滞回性能的影响。结果表明:提出的节点可以达到预期的屈曲约束和损伤控制机制,即核心板率先屈服耗能,约束板可防止核心板发生过大的面外屈曲,主体梁柱保持弹性,节点具有稳定的滞回性能和较大的变形能力;核心板上螺栓预紧力决定了核心板是否会滑移,进而影响滞回曲线的饱满程度,核心板厚度主要影响节点刚度、承载力和损伤分点理论骨架曲线

Abstract

Based on the ideas of buckling restraint and damage control, a steel frame joint with a buckling-restrained connector is proposed in this paper. A pair of core plates of the connector, for which a bucking-restrained system consisting of a restraining plate, two filling plates and an extending beam flange is set up, transmits flange axial forces and balance the beam end moment. Two specimens with and without the restraining plate were tested under low-cyclic loads, and the hysteresis curve, skeleton curve, energy dissipation and strain distribution were analyzed to investigate the influence of the restraining plate on the hysteresis performance of the joints; numerical simulations of the joints were conducted using the finite element software ABAQUS to study the influence of the core plate bolts and thicknesses on the hysteresis performance of the joints. The results show that the proposed joint can achieve the expected buckling restraint and damage control mechanism, i.e., the core plate first yields to dissipate energy, the restraining plate can prevent excessive out-of-plane buckling of the core plate, the main beam and column remain elastic, and the joint behaves a stable hysteresis performance and large deformation capacity. The bolt preload on the core plate determines whether the core plate will slip, which in turn affects the fullness of the hysteresis curve; the core plate thickness mainly affects the joint stiffness, bearing capacity and damage distribution. Finally, the formulae of bearing capacity, beam end displacement and skeleton curve of the joint were theoretically determined.

关键词

钢框架节点 / 屈曲约束 / 损伤控制 / 低周往复荷载试验 / 数值模拟 / 抗震性能

Key words

steel frame joint / buckling restraining / damage control / low-cyclic loading test / numerical simulation / seismic performance

引用本文

导出引用
冯玉龙1,2,温昊1,种迅1,2,蒋庆1,2,朱毅1. 含屈曲约束连接件的钢框架节点抗震性能研究[J]. 振动与冲击, 2023, 42(4): 126-136
FENG Yulong1,2,WEN Hao1,CHONG Xun1,2,JIANG Qing1,2,ZHU Yi1. A study on seismic performance of steel frame joints with buckling-restrained connectors[J]. Journal of Vibration and Shock, 2023, 42(4): 126-136

参考文献

[1] Miller D K. Lessons learned from the northridge earthquake [J]. Engineering Structure, 1998, 20(4-6): 249-260.
[2] Nakashima M, Inoue K, Tada M. Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake [J]. Engineering Structures, 1998, 20(4-6): 271-281.
[3] 陶长发, 孙国华, 何若全, 等. 盖板加强型节点钢框架子结构抗震性能试验研究[J]. 建筑结构学报, 2015, 36(06):19-28.
TAO Changfa, SUN Guohua, HE Ruoquan, et al. Experimental study on seismic behavior of steel frame substructure with cover-plate reinforced connections [J]. Journal of Building Structures, 2015, 36(06):19-28.
[4] 王燕, 冯双, 王玉田. 钢框架刚性连接加强型节点滞回性能试验研究[J]. 土木工程学报, 2011, 44(05):57-68.
WANG Yan, FENG Shuang, WANG Yutian. Experimental study on hysteretic behavior for rigid-reinforced connections [J]. China Civil Engineering Journal, 2011, 44(05):57-68.
[5] 郁有升, 王燕, 刘秀丽. 钢框架梁翼缘削弱型节点循环荷载作用下的有限元分析及试验研究[J]. 工程力学, 2009, 26(09):162-169.
YU Yousheng, WANG Yan, LIU Xiuli. Finite element analysis and experimental study on the behavior of reduced beam section connections of steel frame under cyclic loading[J]. Engineering Mechanics, 2009, 26(09): 162-169.
[6] 杨庆山, 李波, 杨娜. 梁腹板开圆孔钢框架梁柱节点的性能研究[J]. 工程力学, 2007, 24(09):111-121+139. YANG Qinshan, LI Bo, YANG Na. Investigation on behaviors of the connection with opening in beam web of steel moment resisting frames [J]. Engineering Mechanics, 2007, 24(09): 111-121+139.
[7] 张艳霞, 王宗洋, 宁广, 等. 改进型节点钢框架整体模型的抗震性能对比分析[J]. 振动与冲击, 2016, 35(18): 152-158.
ZHANG Yanxia, WANG Zongyang, NING Guang, et al. Seismic performance comparison of steel frames with improved beam-column connections [J]. Journal of vibration and shock, 2016, 35(18): 152-158.
[8] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念——可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(07):941-948.
LU Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design: Earthquake Resilient Structures [J]. Journal of Tongji University(Natural Science), 2011, 39(07):941-948.
[9] 邵铁峰, 陈以一. 采用耗能角钢连接的部件可更换梁试验研究[J]. 建筑结构学报, 2016, 37(07):38-45. SHAO Tiefeng, CHEN Yiyi. Experimental study on steel H-beams with replaceable energy dissipation angle [J]. Journal of Building Structures, 2016, 37(07):38-45.
[10] 陈以一, 贺修樟. 配置可更换角钢连接构造的钢框架试验研究[J]. 钢结构(中英文), 2020, 35(08):1-16. CHEN Yiyi, HE Xiuzhang. Tests on moment resistant frame connection with replaceable angles [J]. Steel Construction (Chinese & English). 2020, 35(08):1-16.
[11] Oh S H, Kim Y J, Ryu H S. Seismic performance of steel structures with slit dampers [J]. engineering structures, 2009, 31(9):1997-2008.
[12] 张爱林, 张振宇, 姜子钦, 等. 可修复的装配式钢框架梁柱节点非线性静力分析[J]. 建筑科学与工程学报, 2017, 34(04):1-8.
ZHANG Ailin, ZHANG Zhenyu, JIANG Ziqin, et al. Nonlinear static analysis of repairable prefabricated steel frame beam-column joint [J]. Journal of Architecture and Civil Engineering, 2017, 34(04):1-8.
[13] 张爱林, 王琦, 姜子钦, 等. 一种可恢复功能的装配式钢结构梁柱节点受力机理研究[J]. 工业建筑, 2018, 48(05):18-23+10.
ZHANG Ailin, WANG Qi, JIANG Ziqin, et al. Stress mechanism of beam-column joints of earthquake-resilient prefabricated steel structure [J]. Industrial Construction, 2018, 48(05):18-23+10.
[14] 罗建良. 基于损伤控制的屈曲约束钢梁柱连接节点抗震性能研究[D]. 济南: 山东大学, 2018.
LUO Jianliang. Study on seismic performance of buckling restrained steel beam-column connections based on damage control [D]. Jinan: Shandong University, 2018.
[15] 陈骁. 震后可快速修复的单边L形屈曲约束钢梁柱节点抗震性能研究[D]. 济南: 山东大学, 2020.
CHEN Xiao. Seismic behavior of steel moment connections with single-sided engery dissipating L-stubs can be repaired quickly after earthquake [D]. Jinan: Shandong University, 2020.
[16] 赵俊贤, 蔡泽鑫, 邵旭东, 等. 基于悬挂连接的韧性钢框架梁柱节点抗震性能数值模拟[J]. 工业建筑, 2021, 51(08): 79-86.
ZHAO Junxian, CAI Zexin, SHAO Xudong, et al. Numerical analysis on the seismic performance of resilient steel beam-column joints using suspended connections [J]. Industrial Construction, 2021, 51(08): 79-86.
[17] 孟宪章. 钢框架新型耗能梁柱节点抗震性能研究[D]. 大连: 大连理工大学, 2019.
MENG Xianzhang. Study of seismic behavior of new energy-dissipating beam-column connection in steel frame [D]. Dalian: Dalian University of Technology, 2019.
[18] 刘永. 带防屈曲盖板震损可更换钢梁抗震性能试验研究[D]. 华侨大学, 2019.
LIU Yong. Experimental study on seismic behavior of replaceable steel beams with buckling-restrained cover [D]. Quanzhou: Huaqiao University, 2019.
[19] 胡方鑫, 盛翔宇, 潘建荣, 等. 震后可更换的钢框架屈曲约束耗能梁柱节点: CN112523351A [P]. 2021-03-19.
[20] Han Peng, Jingping Ou, Stephen Mahin. Design and numerical analysis of a damage-controllable mechanical hinge beam-to-column connection[J]. Soil Dynamics and Earthquake Engineering, 2020, 133:106149.
[21] Park H Y, Oh S H. Design range of the damper of a T-stub damage-controlled system [J]. Journal of Constructional Steel Research, 2019, 30 162: 105719.
[22] Feng YL, Zhu Y, Jiang Q, et al. Quasi-static and fatigue testing of earthquake-resilient steel joints with replaceable buckling-restrained links [J]. Structures, 2021, 29: 1998-2016.
[23] 曾鹏, 陈泉, 王春林, 等. 全钢自复位屈曲约束支撑理论与数值分析[J]. 土木工程学报, 2013, 46(S1):19-24.
ZENG Peng, CHEN Quan, WANG Chunlin, et al. Theoretical and numerical investigations on an all-steel self-centering buckling-restrained brace[J]. China Civil Engineering Journal, 2013, 46(S1):19-24.
[24] 钢结构设计标准:GB 50017—2017 [S]. 北京:中国建筑工业出版社, 2018.
Standard for design of steel structures: GB 50017—2017 [S]. Beijing: China Architecture & Building Press, 2017.
[25] 金属材料 拉伸试验: 第 1 部分: 室温试验方法: GB/T 228.1—2010 [S]. 北 京: 中国标准出版社. 2010.
Metallic materials: tensile testing at ambient temperature: GB/T 228. 1—2010 [S]. Beijing: Standards Press of China, 2010.
[26] Lewei Tong, Yingzhi Chen, Yiyi Chen, et al. Cyclic behaviour of beam-to-column joints with cast steel connectors [J]. Journal of Constructional Steel Research, 2016, 116: 114-130.
[27] AISC. Seismic provisions of structural steel buildings: ANSI /AISC 360-10 [S]. Chicago, USA: American Institute of Steel Construction, 2010.
[28] Chaboche J L. Time-independent constitutive theories for cyclic plasticity [J]. International Journal of Plasticity, 1986, 2(2):149-188.

PDF(3477 KB)

273

Accesses

0

Citation

Detail

段落导航
相关文章

/