一种预报水下声辐射的无网格弱式径向点插值方法

吴绍维1,2,柯磊1,韩国文1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 145-155.

PDF(2872 KB)
PDF(2872 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 145-155.
论文

一种预报水下声辐射的无网格弱式径向点插值方法

  • 吴绍维1,2,柯磊1,韩国文1
作者信息 +

A meshless weak radial point interpolation method for predicting underwater acoustic radiation

  • WU Shaowei1,2,KE Lei1,HAN Guowen1
Author information +
文章历史 +

摘要

提出了一种预报结构水下声辐射的径向点插值(Radial Point Interpolation Method, RPIM)耦合Modified Dirichlet-to-Neumann(MDtN)边界条件的无网格弱式方法。在RPIM-MDtN方法中,采用人工边界将结构外部无限问题域截断为有限计算域,利用RPIM构造声形函数,并在截断边界处施加MDtN边界条件,以提高计算精度和确保声波自由衰减及解的唯一性。在该方法中,声场量的插值无需使用网格或场点的连接属性。研究了该方法性能的影响因素,采用算例对该方法的有效性进行了验证。结果表明:与有限元法相比,该方法具有计算精度高和收敛速度快的优势,对声波数的敏感度显著降低;在要求高精度时,该方法具有计算效率的优势。

Abstract

A meshfree weak-form method based on combining radial point interpolation method (RPIM) and modified Dirichlet-to-Neumann (MDtN) boundary condition is proposed for use in analyzing underwater acoustic radiation. In the method, unbounded problem domain is truncated by an artificial boundary to yield a finite computational domain. Simultaneously, MDtN boundary condition is imposed on the artificial boundary to guarantee the uniqueness of the solution, and RPIM is used to form acoustic shape function without use of mesh or connectivity of nodes for implementing field variable interpolations. The factors affecting the performance of the devised method are investigated. Numerical examples are performed to test the performance of the present method. The simulations indicate that this method can produce more accurate results together with faster convergency and better efficiency and is much less sensitive to the acoustic wave number compared to the finite element scheme. Therefore, this devised method is competitive for predicting underwater acoustic radiation.

关键词

径向点插值法 / 无网格 / Modified Dirichlet-to-Neumann边界 / 水下声辐射

Key words

radial point interpolation / meshfree / modified Dirichlet-to-Neumann boundary / underwater acoustics

引用本文

导出引用
吴绍维1,2,柯磊1,韩国文1. 一种预报水下声辐射的无网格弱式径向点插值方法[J]. 振动与冲击, 2023, 42(4): 145-155
WU Shaowei1,2,KE Lei1,HAN Guowen1. A meshless weak radial point interpolation method for predicting underwater acoustic radiation[J]. Journal of Vibration and Shock, 2023, 42(4): 145-155

参考文献

[1] 刘宝,程广利,王德石. Burton-Miller改进型边界方程的多频计算方法[J]. 声学学报,2019, 44(5):865-873.
LIU Bao, CHENG Guang-li, WANG De-shi. Multi frequency calculation method for improved Burton-Miller boundary equation[J]. Acta Acustica, 2019, 44(5): 865-873.
[2] 龚家元,安俊英,马力,等. 边界元奇异与近奇异数值积分方法及其应用于大规模声学问题[J]. 声学学报,2016, 41(05):768-775.
Gong Jia-yuan, An Jun-ying, Ma Li, et al. Numerical quadrature for singular and near-singular integrals of boundary element method and its applications in large-scale acoustic problems[J]. Acta Acustica, 2016, 41(05): 768-775.
[3] Zarnekow M, Ihlenburg F, Graetsch T. An efficient approach to the simulation of acoustic radiation from large structures with FEM[J]. Journal of Theoretical and Computational Acoustics, 2020, 28(4): 1950019.
[4] 吴绍维,向阳,张波. 自由场声辐射预报的可变阶波包络单元与有限元耦合方法[J]. 机械工程学报,2018, 54(7):74-86.
Wu Shao-wei, Xiang Yang, Zhang Bo. A coupled variable order acoustic wave envelope element-finite element method for sound radiation in infinite domain[J]. Journal of Mechanical Engineering, 2018, 54(7): 74-86.
[5] 张桂勇,鲁欢,王海英,等. 基于点基局部光滑点插值法的结构动力分析[J]. 振动与冲击,2018, 37(17):242-248.
Zhang Gui-yong, Lu Huan, Wang Hai-ying, et al. Structural dynamic analysis using NPSPIM[J]. Journal of Vibration and Shock, 2018, 37(17): 242-248.
[6] Dai T F, Jin X, Yang H Z, et al. Smoothed finite element methods for predicting the mid to high frequency acoustic response in the cylinder-head chamber of a diesel engine[J]. International Journal of Computational Methods, 2020, 17(9): 1950060.
[7] Liu G R, Zhang G Y. Smoothed point interpolation methods: G space theory and weakened weak forms[M]. Singapore: World Scientific, 2013.
[8] Chai Y B, Li W, Gong Z X, et al. Hybrid smoothed finite element method for two-dimensional under water acoustic scattering problems[J]. Ocean Engineering, 2016, 116(1): 129-141.
[9] Liu G R, Zhang G Y, Zong Z, et al. Meshfree cell-based smoothed alpha radial point interpolation method (CS-αRPIM) for solid mechanics problems[J]. International Journal of Computational Methods, 2013, 10(4): 1350020.
[10] Li W, Chai Y B, Lei M, et al. Numerical investigation of the edge-based gradient smoothing technique for exterior Helmholtz equation in two dimensions[J]. Computers and Structures, 2017, 182(1): 149-164.
[11] Keller J, Givoli D. Exact non-reflecting boundary conditions[J]. Journal of Computational Physics, 1989, 82(1): 172-192.
[12] Givoli D, Patlashenko I. Optimal local non-reflecting boundary conditions[J]. Applied Numerical Mathematics, 1998, 27(4): 367-384.
[13] Grote M, Keller J. On nonreflecting boundary conditions[J]. Journal of Computational Physics, 1995, 122(2): 231-243.
[14] Geng H R, Yin T, Xu L W. A priori error estimates of the DtN-FEM for the transmission problem in acoustics[J]. Journal of Computational and Applied Mathematics, 2017, 313: 1-17.
[15] Koyama D. Error estimates of the finite element method for the exterior Helmholtz problem with a modified DtN boundary condition[J]. Journal of Computational and Applied Mathematics, 2009, 232(1): 109-121.
[16] Liu G R, Gu Y T. An introduction to meshfree methods and their programming[M]. The Netherlands: Springer Verlag, 2005.
[17] Liu G R, Gu Y T. A point interpolation method for two-dimensional solids[J]. International Journal for Numerical Methods in Engineering, 2001, 50(4): 937-951.
[18] Liu G R, Gu Y T. A matrix triangularization algorithm for the polynomial point interpolation method[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(19): 2269-2295.
[19] Liu G R, Gu Y T. A local radial point interpolation method (LR-PIM) for free vibration analyses of 2-D solids[J]. Journal of Sound and Vibration, 2001, 246(1): 29-46.
[20] Wenterodt C, Estorff O V. Optimized meshfree methods for acoustics[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(25-28): 2223-2236.
[21] 吴绍维,向阳,黄庭瑞. 预报振动噪声的径向基点插值无网格与无限元耦合方法[J]. 振动与冲击,2020, 39(10):32-43.
Wu Shao-wei, Xiang Yang, Huang Ting-rui. A meshless radial point interpolation coupled with improved infinite element method for predicting sound radiation[J]. Journal of Vibration and Shock, 2020, 39(10): 32-43.
[22] Xin H, Cui X Y, Zhang Q Y, et al. The stable node-based smoothed finite element method for analyzing acoustic radiation problems[J]. Engineering Analysis with Boundary Elements, 2017, 80: 142-151.
[23] Chai Y B, You X Y, Li W, et al. Application of the edge-based gradient smoothing technique to acoustic radiation and acoustic scattering from rigid and elastic structures in two dimensions[J]. Computers and Structures, 2018, 203: 43-58.
[24] Xu Y Y, Zhang G Y, Zhou B, et al. Analysis of acoustic radiation problems using the cell-based smoothed radial point interpolation method with Dirichlet-to-Neumann boundary condition[J]. Engineering Analysis with Boundary Elements, 2019, 108: 447-458.
[25] Kaltenbacher M. Computational acoustics[M]. Berlin: Springer, 2018.
[26] Qi L B, Wu Y S, Zhou M S, et al. Propeller-shaft-hull coupled vibration and its impact on acoustic radiation utilizing sono-elasticity theory[J]. Ocean Engineering, 2019, 171: 391-398.

PDF(2872 KB)

Accesses

Citation

Detail

段落导航
相关文章

/