复合运动激励下吊装多体系统振动分析与联合控制

颜世军,彭宇何,彭剑,任中俊

振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 156-162.

PDF(1582 KB)
PDF(1582 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 156-162.
论文

复合运动激励下吊装多体系统振动分析与联合控制

  • 颜世军,彭宇何,彭剑,任中俊
作者信息 +

Vibration analysis and combination control of a multi-body hoisting system under compound motion

  • YAN Shijun,PENG Yuhe,PENG Jian,REN Zhongjun
Author information +
文章历史 +

摘要

建立了针对吊装系统在复合运动激励下的多体动力学模型,并给出了系统振动抑制的联合控制方法。以回转和变幅角速度为系统输入,分别利用作大范围运动的弹簧质量阻尼系统和空间悬吊系统描述吊臂弹性振动和吊物摆动,基于拉格朗日方程,采用递推列式法推导并给出了吊装多体系统5自由度空间运动方程。分别采用输入整形法和比例微分(PD)反馈控制法对吊物空间摆动及吊臂弹性振动进行振动控制,根据系统耦合振动特性,设计了能同时抑制吊臂振动和吊物摆动的联合控制器。系统振动分析及联合控制结果表明,所构建的动力学模型能有效分析回转和变幅复合运动激励下吊装多体系统的动力学特征,相比传统输入整形控制法,所设计的联合控制器对吊装多体系统的振动抑制效果得到较大提升。

Abstract

A dynamic model is established of multi-body systems for hoisting under compound motion, and a control system combining input shaping and feedback control method is proposed for the system. The boom’s vibration and payload’s swing are described by using the spring-mass-damping system and suspension system respectively in the model. Based on Lagrange’s equation, a five-DOF space motion equation of the hoisting system is derived and given by using the recursive method. The combined input shaping method and the proportional-derivative feedback algorithm are used to suppress the payload’s swing and the boom’s elastic vibration simultaneously, according to the coupling vibration characteristics of the system. Results of vibration analysis show that the model can effectively analyze the dynamic characteristics of the multi-body system under the combining slewing and luffing motion excitation. Compared with the traditional input shaping control method, the vibration suppression effect of the designed controller is greatly improved.

关键词

多体吊装系统 / 复合运动激励 / 动力学响应 / 联合控制

Key words

multi-body system for hoisting / compound motion / dynamic response / combined control method

引用本文

导出引用
颜世军,彭宇何,彭剑,任中俊 . 复合运动激励下吊装多体系统振动分析与联合控制[J]. 振动与冲击, 2023, 42(4): 156-162
YAN Shijun,PENG Yuhe,PENG Jian,REN Zhongjun. Vibration analysis and combination control of a multi-body hoisting system under compound motion[J]. Journal of Vibration and Shock, 2023, 42(4): 156-162

参考文献

[1] MORI Y, TAGAWA Y . Vibration controller for overhead cranes considering limited horizontal acceleration [J]. Control Engineering Practice, 2018, 81:256-263.
[2] MOHAMED H, RAAFAT S, MOSTAFA S. A hybrid partial feedback linearization and deadbeat control scheme for a nonlinear gantry crane [J]. Journal of The Franklin Institute, 2018, 355(14): 6286-6299.
[3] CHEN H, FANG Y, SUN N. An adaptive tracking control method with swing suppression for 4-DOF tower crane systems [J]. Mechanical Systems and Signal Processing, 2019, 123:436-454.
[4] NEUPERT J, ARNOLD E, SCHNEIDER K. Tracking and anti-sway control for boom cranes [J]. Control Engineering Practice, 2010, 18(1):31-44.
[5] CIBICIK A, EGELAND O. Dynamic modelling and force analysis of a knuckle boom crane using screw theory [J]. Mechanism and Machine Theory, 2019, 133:179-194.
[6] MARTIN I A, IRANI R A. Dynamic modeling and self-tuning anti-sway control of a seven degree of freedom shipboard knuckle boom crane [J]. Mechanical Systems & Signal Processing, 2021, 153.
[7] AAKASH K, RAVINDRA S B, SORAJ K P. Dynamic modelling and payload response analysis of a 3-D overhead gantry crane. Advances in Systems Engineering, 2021, 189-198
[8] 刘华森, 程文明, 尹皓. 柔性梁与带摆动荷载小车的耦合动力学分析[J]. 西南交通大学学报, 2017, 52(2):400-407.
LIU Huasen, CHENG Wenming, YIN Hao. Coupled dynamics analysis for a flexible beam with a trolley subjected to pendulum payload. Journal of Southwest Jiaotong University, 2017, 52(2):400-407.
[9] JERMAN B, PODRZAJ P, KRAMAR J. An investigation of slewing-crane dynamics during slewing motion-development and verification of a mathematical model [J]. International Journal of Mechanical Sciences, 2004, 46(5):729-750.
[10] PARK K P,CHA J H,LEE K Y. Dynamic factor analysis considering elastic boom effects in heavy lifting operations [J]. Ocean Engineering, 2011, 38(10):1100-1113.
[11] FLORENTIN R, SAWODNY O. An elastic jib model for the slewing control of tower cranes [J]. IFAC-PapersOnLine, 2017,25(1):9796-9801
[12] 颜世军, 刘运思, 彭剑. 超长柔吊装臂架回转作业刚柔耦合动力学模型与分析[J]. 应用力学学报, 2018, 35(6):116-122.
YAN Shijun, LIU Yunsi, PENG Jian. Rigid-flexible dynamic modeling and analysis of super long and flexible boom system in case of slewing motion [J]. Chinese Journal of Applied Mechanics, 2018, 35(6):116-122.
[13] 夏拥军,缪谦.计及二阶效应的门座起重机变幅工况动力学分析[J]. 计算力学学报, 2010, 27(4): 711-715.
XIA Yongjun,MIU Qian. Dynamic analysis of port crane in case of modifying amplitude with second-order effect [J]. Chinese Journal of Computational Mechanics,2010, 27(4): 711-715.
[14] RAMLI L , MOHAMED Z, ABDULLAHI A M. Control strategies for crane systems: A comprehensive review [J]. Mechanical Systems & Signal Processing, 2017, 95:1-23
[15] MAGHSOUDI M J , RAMLI L, SUDIN S . Improved unity magnitude input shaping scheme for sway control of an under-actuated 3D overhead crane with hoisting [J], Mechanical systems and signal processing, 2019,123: 466-482
[16] LAWRENCE J, SINGHOSE W. Command shaping slewing motions for tower cranes [J]. Journal of Vibration & Acoustics, 2010, 132(1):11-21.
[17] UCHIYAMA N, OUYANG H, SANO S. Simple rotary crane dynamics modeling and open-loop control for residual load sway suppression by only horizontal boom motion [J]. Mechatronics, 2013, 23(8):1223–1236.
[18] MALEKI E, HUANG J, SINGHOSE W. Dynamics and swing control of mobile boom cranes subject to wind disturbances [J]. IET Control Theory & Applications, 2013, 7(9):1187-1195.
[19] AHMAD M A, RAMLI M S, ZAWAWI M A. Hybrid collocated PD with non-collocated PID for sway control of a lab-scaled rotary crane [J]. Industrial Electronics and Applications, 2010, 45: 707-711.
[20] YANG B, XIONG B. Application of LQR techniques to the anti-Sway controller of overhead Crane [J]. Advanced Materials Research, 2010, 139-141:1933-1936.
[21] 胡富元, 邵雪卷, 张井岗. 基于模型预测算法的桥式起重机消摆控制[J]. 控制工程, 2019, 26(7):1378-1383.
HU Fuyuan, SHAO Xuejuan, ZHANG Jinggang. Anti -swing control of bridge crane based on model predictive algorithm [J]. Control Engineering of China, 2019, 26(7):1378-1383.   
[22] SMOCZEK J. Experimental verification of a GPC-LPV method with RLS and P1-TS fuzzy-based estimation for limiting the transient and residual vibration of a crane system [J]. Mechanical Systems & Signal Processing, 2015. 62-63:324-340.
[23] OUYANG H, TIAN Z, YU L. Load swing rejection for double-pendulum tower cranes using energy-shaping-based control with actuator output limitation [J]. ISA Transactions, 2020, DOI: 10.1016/ j.isatra. 2020.02.013
[24] 孙友刚, 董达善, 强海燕等. 海上浮式集装箱起重机的小车位置跟踪和吊物消摆控制研究[J]. 振动与冲击, 2018, 37(11): 207-215.
SUN Yougang, DONG Dashan, QIANG Haiyan. Crab position tracking and lifting weight anti-sway control for an offshore container crane on sea [J]. Journal of Vibration and Shock, 2018, 37(11): 207-215.
[25] 张圆圆, 何永玲, 周海燕,等. 基于模糊变结构控制的桥式起重机防摆研究[J]. 中国工程机械学报, 2019, 17(2):22-26.
ZHANG Yuanyuan, HE Yongling, ZHOU Haiyan, et al. Study based on fuzzy variable structure control for the load’s anti-swing of overhead cranes [J]. Chinese Journal of Construction Machinery, 2019, 17(2):22-26.
[26] TUAN L, CUONG H, TRIEU P, NHO L, THUAN V, ANH L. Adaptive neural network sliding mode control of shipboard container cranes considering actuator backlash [J]. Mechanical Systems and Signal Processing, 2018;112:233–50
[27] MAR R, GOYAL A, NGUYEN V, et al. Combined input shaping and feedback control for double-pendulum systems [J]. Mechanical Systems and Signal Processing, 2017, 85:267-277
[28] JIE H, MALEKI E, SINGHOSE W . Dynamics and swing control of mobile boom cranes subject to wind disturbances [J]. Iet Control Theory & Applications, 2013, 7(9):1187-1195.
[29] 颜世军, 彭剑, 任中俊等. 基于等效简化模型的柔性吊装多体系统动力响应分析[J]. 振动与冲击, 2020, 39(18):260-266.
YAN Shijun. PENG Jian, REN Zhongjun, etc. Dynamics of a flexible multi-body hoisting system based on an equivalent simplified model [J]. Journal of Vibration and Shock, 2020, 39(18): 255-261.

PDF(1582 KB)

356

Accesses

0

Citation

Detail

段落导航
相关文章

/