城市轨道交通地下线振动源机理和频率特性

杨宜谦1,刘鹏辉1,房斌2,董振升1,张宏亮3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 171-178.

PDF(2781 KB)
PDF(2781 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 171-178.
论文

城市轨道交通地下线振动源机理和频率特性

  • 杨宜谦1,刘鹏辉1,房斌2,董振升1,张宏亮3
作者信息 +

Vibration source mechanism and frequency characteristics of underground lines of urban rail transits

  • YANG Yiqian1,LIU Penghui1,FANG Bin2,DONG Zhensheng1,ZHANG Hongliang3
Author information +
文章历史 +

摘要

基于我国24个城市轨道交通地下线35个断面振动源的实测数据,分析了城市轨道交通地下线的振动源机理和时频特性,并利用钢轨、道床、隧道壁的实测振动数据识别车辆簧下质量和轨道耦合系统P2共振频率,导出扣件刚度;通过力锤敲击试验识别了轨道第1阶自振频率,导出扣件刚度。提出了P2共振和车轮磨耗激励频率是城市轨道交通环境振动和室内二次结构噪声的主要激励源之一,扣件垫板老化后刚度增大使P2共振频率提高,对二次结构噪声的贡献比对环境振动的贡献更为显著。Pined-Pined共振、轮轨粗糙度是城市轨道交通环境噪声和车内噪声的主要激励源。

Abstract

Based on the measured data of the vibration source of 35 sections of the 24 urban rail transit underground lines. The excitation mechanism and frequency characteristics are discussed; the vibration data of the rail, track bed, and tunnel wall are used to identify the un-sprung mass of the vehicle and the P2 resonance frequency of the track coupling system , The stiffness of the fastener is deduced. The first natural frequency and Pined-Pined resonance frequency of the track system are analyzed based on the data of hammer impact test, and the stiffness of the fastener is deduced. It is proposed that the P2 resonance of the vehicle un-sprung mass and the track coupling system and wheel wear excitation frequency is one of the main excitation sources of urban rail transit environmental vibration and indoor secondary structure noise. The increase in stiffness of the fastener pad after aging increases the P2 resonance frequency. The contribution of noise is more significant than the contribution to environmental vibration. Pined-Pined resonance and wheel-rail roughness are the main excitation sources of urban rail transit environmental noise and interior noise.

关键词

城市轨道交通 / 地铁 / 地下线 / 振动源 / 频率特性

Key words

Urban rail transit / subway / underground lines / vibration source / frequency characteristics

引用本文

导出引用
杨宜谦1,刘鹏辉1,房斌2,董振升1,张宏亮3. 城市轨道交通地下线振动源机理和频率特性[J]. 振动与冲击, 2023, 42(4): 171-178
YANG Yiqian1,LIU Penghui1,FANG Bin2,DONG Zhensheng1,ZHANG Hongliang3. Vibration source mechanism and frequency characteristics of underground lines of urban rail transits[J]. Journal of Vibration and Shock, 2023, 42(4): 171-178

参考文献

[1] 杨宜谦. 地铁和铁路环境振动源[J]. 环境工程, 2013, 31(S1): 654-658, 746.
YANG Yiqian. Environmental vibration source from metro and railway [J]. Environmental Engineering, 2013, 31(S1): 654-658, 746.
[2] 潘昌实, 谢正光. 地铁区间隧道列车振动测试与分析[J]. 土木工程学报, 1990, (2): 21-28.
PANG Changshi, XIE Zhengguang. Measurement and analysis of vibration caused by passing trains in subway running tunnel [J]. China Civil Engineering Journal, 1990, (2): 21-28.
[3] 李克飞, 刘维宁, 孙晓静, 等. 北京地铁5号线地下线减振措施现场测试与分析[J]. 铁道学报, 2011, 33(4): 112-118.
LI Kefei, LIU Weining, SUN Xiaojing, et al. In-situ test of vibration attenuation of underground line of Beijing Metro Line 5 [J]. Journal of the China Railway Society, 2011, 33(4): 112-118.
[4] 李克飞, 刘维宁, 孙晓静, 等. 北京地铁5号线高架线减振措施现场测试与分析[J]. 中国铁道科学, 2009, 30(4): 25-29.
LI Kefei, LIU Weining, SUN Xiaojing, et al. In-situ test and analysis on the vibration mitigation measures of the elevated line in Beijing Metro Line 5 [J]. China Railway Science, 2009, 30(4): 25-29.
[5] 夏禾. 交通环境振动工程[M]. 北京: 科学出版社, 2010.
[6] 刘鹏辉, 杨宜谦, 尹京. 地铁隧道内不同轨道结构振动测试与分析[J]. 振动与冲击, 2014, 33(2): 31-36.
LIU Penghui, YANG Yiqian, YIN Jing. Test and analysis on vibration of different track structures in tunnel[J]. Journal of Vibration and Shock, 2014, 33(2): 31-36.
[7] 张莉, 刘鹏辉, 杨宜谦, 等. 杭州地铁1号线浮置板轨道减振效果对比分析[J]. 铁道建筑, 2013, (10): 80-83.
ZHANG Li, LIU Penghui, YANG Yiqian, et al. Comparative analysis of vibration reduction effect of floating slab track of Hangzhou Metro Line 1[J]. Railway Egineering, 2013, (10): 80-83.
[8] 李宪同, 张斌, 户文成, 等. 北京地铁环境振动预测中源强选取的研究[J]. 城市轨道交通研究, 2012, 15(8): 80-83, 89.
LI Xiantong, ZHANG Bin, LU Wencheng, et al. Selection of vibration source position in environment vibration forecast of Beijing Metro[J]. Urban Mass Transit, 2012, 15(8): 80-83, 89.
[9] 张斌, 俞泉瑜, 户文成, 等. 地铁减振措施过渡段减振性能的测试与分析[J]. 振动、测试与诊断, 2013, 33(1): 138-143, 171.
ZHANG Bin,YU Quanyu, HU Wencheng, et al. Test and analysis of vibration reduction performance of transition section of subway vibration reduction measures[J]. Journal of Vibration, Measurement&Diagnosis, 2013, 33(1): 138-143, 171.
[10] 翟婉明. 车辆-轨道耦合动力学. 第4版(上册、下册)[M]. 北京: 科学出版社, 2015.
[11] 雷晓燕. 高速铁路轨道动力学: 模型、算法与应用[M]. 北京: 科学出版社, 2015.
[12] 刘维宁, 马蒙. 地铁列车振动环境影响的预测、评估与控制[M]. 北京: 科学出版社, 2014.
[13] GB/T 51228-2017 建筑振动荷载标准[S]. 北京: 中国建筑工业出版社, 2018.
[14] ISO 14837-1:2005 Mechanical vibration – Ground-borne noise and vibration arising from rail systems – Part 1: General guidance[S].
[15] GB/T 33521.1-2017 机械振动 轨道系统产生的地面诱导结构噪声和地传振动 第1部分:总则[S]. 北京: 中国标准出版社, 2017.
[16] 金雪松, 吴越, 梁树林, 等. 车轮非圆化磨耗问题研究进展[J]. 西南交通大学学报, 2018, 53(1): 1-14.
JIN Xuesong, WU Yue, LIANG Shuling, et al. Mechanisms and countermeasures of Out-of-roundness wear on Railway vehicle wheels[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 1-14.
[17] Grassie S L, Gregory R W, Harrison D, et al, The dynamic response of railway track to high frequency vertical excitation[J]. Journal of Mechanical Engineering Sciences 1982, 24(2): 77-90.
[18] 雷晓燕. 高速铁路轨道动力学—模型、算法与应用(第二版 )[M]. 北京:科学出版社, 2018.
[19] 汤普森(David Thompson). 铁路噪声与振动: 机理、模型和控制方法[M]. 中国铁道科学研究院节能环保劳卫研究所译. 北京: 科学出版社, 2013.
[20] 关庆华, 周业明, 李伟, 等. 车辆轨道系统的P2共振频率研究[J]. 机械工程学报, 2019, 55(8): 118-127.
GUAN Qinghua, ZHOU Yeming, LI Wei, et al. Study on the P2 resonance frequency of vehicle track system[J]. Journal of Mechanical Engineering, 2019, 55(8): 118-127.
[21] GB 50157-2013 地铁设计规范[S]. 北京: 中国建筑工业出版社, 2013.
[22] 北京市城乡规划标准化办公室. 北京市工程建设标准设计文件 轨道交通通用图 20BGGD6 弹条Ⅱ-2型扣件[S]. 2020.
[23] 牛澎波, 王平. 扣件胶垫老化对地铁振动的影响[J]. 铁道建筑, 2017, 57(12): 116-118, 140.
NIU Pengbo, WANG Ping. Influence of fastener pad aging on vibration of subway structure[J]. Railway Engineering, 2017, 57(12): 116-118, 140.

PDF(2781 KB)

791

Accesses

0

Citation

Detail

段落导航
相关文章

/