不同润滑介质下气体静压轴承气锤自激振动研究

安磊,王伟,龚维纬

振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 185-193.

PDF(3257 KB)
PDF(3257 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 185-193.
论文

不同润滑介质下气体静压轴承气锤自激振动研究

  • 安磊,王伟,龚维纬
作者信息 +

A study on self-excited vibration of the pneumatic hammer of an aerostatic bearing under different lubricating media

  • AN Lei,WANG Wei,GONG Weiwei
Author information +
文章历史 +

摘要

为研究不同润滑介质对气体静压轴承气锤自激振动的影响,耦合时变的气膜流场控制方程、流量平衡方程和转子受力方程建立了轴承系统的单自由度气锤振动模型。利用有限差分法数值求解模型,得出气膜振动速度瞬态响应曲线用来判定轴承稳定性,并通过实验验证了模型的可靠性和程序的有效性。计算结果表明,使用氙气可以有效降低气锤自激振动的发生;对于氙气和空气的混合气体,随着氙气体积比的增大,气膜振动速度曲线衰减趋势加强轴承稳定性提高,轴承支撑力增大,且供气压力越高支撑力增大幅度越大;当氙气体积比从0增大到0.6时,轴承支撑力快速增大,临界供气压力也持续提高,当氙气体积比超过0.6后,轴承支撑力和临界供气压力增长缓慢,结合成本考虑,氙气体积比为0.6可作为最佳体积比。该研究为气体静压轴承气锤自激振动的抑制提供了新思路。

Abstract

In order to study the influence of different lubricating media on the self-excited vibration of pneumatic hammer of aerostatic bearing, the single-degree-of-freedom vibration model of the bearing system was established by coupling the time-varying governing equation of the gas film flow field, the flow balance equation and the rotor force equation. The finite difference method was used to numerically solve the model, and the transient response curve of gas film vibration velocity was obtained to determine the stability of the bearing, and the reliability of the model and the validity of the program were verified through experiments. The calculation results show that the use of xenon can effectively reduce the occurrence of self-excited vibration of the pneumatic hammer; for the mixed gas of xenon and air, as the volume ratio of xenon increases, the attenuation trend of the gas film vibration velocity curve is strengthened, and the stability of the bearing is improved, the supporting force of the bearing is improved, and the higher the gas supply pressure, the greater the range of support force increases. When the xenon volume ratio increases from 0 to 0.6, the bearing supporting force increases rapidly, and the critical gas supply pressure also continues to increase. When the xenon volume ratio exceeds 0.6, the bearing support force and critical gas supply pressure increase slowly. Considering the cost, the xenon volume ratio of 0.6 can be used as the optimal volume ratio. This study provides a new idea for the suppression of self-excited vibration of pneumatic hammer of aerostatic bearing.

关键词

润滑介质 / 气体静压轴承 / 气锤自激振动 / 混合气体 / 支撑力

Key words

lubricating media / aerostatic bearing / self-excited vibration of pneumatic hammer / mixed gas / supporting force

引用本文

导出引用
安磊,王伟,龚维纬 . 不同润滑介质下气体静压轴承气锤自激振动研究[J]. 振动与冲击, 2023, 42(4): 185-193
AN Lei,WANG Wei,GONG Weiwei. A study on self-excited vibration of the pneumatic hammer of an aerostatic bearing under different lubricating media[J]. Journal of Vibration and Shock, 2023, 42(4): 185-193

参考文献

[1] 周济. 智能制造——“中国制造2025”的主攻方向[J].中国机械工程, 2015, 26(17):  2273-2284.
     ZHOU Ji. Intelligent mannfacturing——main direction of “made in China 2025”[J]. China Mechanical Engineering, 2015, 26(17):  2273-2284.
[2] 梁迎春, 陈国达, 孙雅洲, 等. 超精密机床研究现状与展望[J]. 哈尔滨工业大学学报, 2014, 46(5):  28-39.
 LIANG Yingchun, CHEN Guoda, SUN Yazhou, et al. Research status and outlook of ultra-precision machine tool[J]. Journal of Harbin Institute of Technology, 2014, 46(5):  28-39.
[3] GAO Q, CHEN W Q, LU L H, et al. Aerostatic bearings design and analysis with the application to precision engineering: State-of-the-art and future perspectives[J]. Tribology International, 2019, 135:  1-17.
[4] 彭旭东, 赵艳凤, 江锦波, 等. 动静压气体端面润滑技术研究现状[J]. 润滑与密封, 2019, 44(1):  1-7.
     PENG Xudong, ZHAO Yanfeng, JIANG Jinbo, et al. Development status of hydrostatic-dynamic gas lubrication technology[J]. Lubrication Engineering, 2019, 44(1):  1-7.
[5]  ZHU J C, CHEN H, CHEN X D. Large eddy simulation of vortex shedding and pressure fluctuation in aerostatic bearings[J]. Journal of Fluids and Structures, 2013, 40:  42-51.
[6] CHEN X D, CHEN H, ZHU J C, et al. Vortex suppression and nano-vibration reduction of aerostatic bearings by arrayed microhole restrictors[J]. Journal of Vibration and Control, 2017, 23(5):  842-852.
 [7] GAO S Y, CHENG K, CHEN S J, et al. CFD based investigation on influence of orifice chamber shapes for the design of aerostatic thrust bearings at ultra-high speed spindles[J]. Tribology International, 2015, 92:        211-221.
 [8] 李运堂, 蔺应晓, 朱红霞, 等. 基于大涡模拟静压气体推力轴承微幅自激振动特性分析[J]. 机械工程学报, 2013, 49(13):56-62.
 LI Yuntang, LIN Yingxiao, ZHU Hongxia, et al. Analysis of the micro self-vibration of aerostatic thrust bearing based on large eddy simulation[J]. Journal of Mechanical Engineering, 2013, 49(13):56-62.
[9] 裴浩, 龙威, 杨绍华, 等. 空气静压轴承微振动形成机理分析[J]. 振动与冲击, 2018, 37(5):71-78.
 PEI Hao, LONG Wei, YANG Shaohua, et al. Formation mechanism of micro-vibration in aerostatic bearings[J]. Journal of Vibration and Shock, 2018, 37(5):71-78.
[10] 龙威, 王继尧, 李法社, 等. 空气静压止推轴承自激微振动数值分析及实验研究[J].振动与冲击, 2019, 38(16): 224-232.
 LONG Wei, WANG Jiyao, LI Fashe, et al. Numerical analysis and experimental research on self-excited micro-vibration of aerostatic thrust bearings[J]. Journal of Vibration and Shock, 2019, 38(16):224-232.
[11] POWELL J W. Design of aerostatic bearing[M]. Machinery Publishing Co. Ltd. 1970.
[12] 王云飞. 气体润滑理论与气体轴承设计[M]. 北京: 机械工业出版社,1999.
     WANG Yunfei. Gas lubrication theory and gas bearing design[M]. Beijing: China Machine Press, 1999.
[13] TALUKDER H M, STOWELL T B. Pneumatic hammer in an externally pressurized orifice compensated air journal bearing[J]. Tribology International, 2003, 36:  585-591.
[14] FARID A B. On the modelling of the dynamic characteristics of aerostatic bearing films: From stability analysis to active compensation[J]. Precision Engineering, 2009, 33:  117-126.
[15] BHATA N, KUMARB S, TAN W, et al. Performance of inherently compensated flat pad aerostatic bearings subject to dynamic perturbation forces[J]. Precision Engineering, 2012, 36:  399-407.
[16] MA W, CUI J W, LIU Y M, et al. Improving the pneumatic hammer stability of aerostatic thrust bearing with recess using damping orifices[J]. Tribology International, 2016, 103:  281-288.
[17] ZHENG Y Q, YANG G W, CUI H L, et al. Pneumatic stability analysis of single-pad aerostatic thrust bearing with pocketed orifice[J]. Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology, 2019, 234(12):  1857-1866.
[18] 马伟, 孔祥龙, 徐毅, 等. 气体静压轴承相位致振气锤失稳机理与试验[J]. 光学精密工程, 2020, 28(5):  1101- 1108.
 MA Wei, KONG Xianglong, XU Yi, et al. Mechanism and test of air hammer instability of aerostatic bearing based on phase-induced vibration[J]. Optics and Precision Engineering, 2020, 28(5):  1101- 1108.
[19] DAL A, KARACAY T. Pneumatic hammer instability in the aerostatic journal bearing-rotor system: A theoretical and experimental analyses[J]. Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology, 2020, 0(0):  1-20.
[20] 魏先杰, 龙威, 任璞, 等. 尺度效应下均压槽结构对空气静压轴承自激振动的影响[J/OL]. 推进技术:   1-10[2021-06-23].https://doi.org/10.13675/j.cnki.tjjs.200569.
 WEI Xianjie, LONG Wei, REN Pu, et al. Effects of pressure groove structure on self-excited vibration of aerostatic bearing under scale effect[J/OL]. Journal of Propulsion Technology:  1-10[2021-06-23]. https://doi.org/10.13675/j.cnki.tjjs.200569.
[21] 王学敏, 杜建军, 李姗姗. 基于有限差分法对不同润滑介质下静压气体轴颈轴承性能研究[J]. 机械工程学报, 2012, 48(3):  121-127.
 WANG Xuemin, DU Jianjun, LI Shanshan.  Performance research on the externally pressurized gas journal bearing under different working gas based on finite difference method[J]. Journal of Mechanical Engineering, 2012, 48(3):121-127.
[22] 郭雨, 赖天伟, 任雄豪, 等. 润滑介质种类对气浮轴承性能的影响[J]. 润滑与密封, 2021, 46(5):  1-5.
 GUO Yu, LAI Tianwei, REN Xionghao, et al. Effect of lubrication medium on gas bearing performance[J]. Lubrication Engineering, 2021, 46(5):  1-5.
[23] 王建磊, 门川皓, 赵伟刚, 等. 动静压机械密封的结构设计及端面槽型优化研究[J]. 机械工程学报, 2021, 57(9):  108-117.
 WANG Jianlei, MEN Chuanhao, ZHAO Weigang, et al. Research on structural design and end face slot of optimization of hydrodynamic and hydrostatic mechanical seal[J]. Journal of Mechanical Engineering, 2021, 57(9):108-117.
[24] 史宝军,杨廷毅,季家东. 纳米间隙气膜润滑理论及应用[M]. 北京: 科学出版社,2019.
     SHI Baojun, YANG Tingyi, JI Jiadong. Theory and application of nano-gap gas film lubrication[M]. Beijing: Science Press, 2019.

PDF(3257 KB)

Accesses

Citation

Detail

段落导航
相关文章

/