多年冻土场地桩基桥梁地震响应不确定性量化分析

李发达1,苏雷1,万华平2,凌贤长1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 204-211.

PDF(2325 KB)
PDF(2325 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 204-211.
论文

多年冻土场地桩基桥梁地震响应不确定性量化分析

  • 李发达1,苏雷1,万华平2,凌贤长1
作者信息 +

Uncertainty quantification of seismic response of a pile-supported bridge in the permafrost region

  • LI Fada1,SU Lei1,WAN Huaping2,LING Xianzhang1
Author information +
文章历史 +

摘要

本研究采用多年冻土场地桩基桥梁数值模型和高斯过程替代模型进行多年冻土场地桩基桥梁地震响应不确定性量化分析。首先,利用实验设计方法构建多年冻土场地桩基桥梁高斯过程替代模型的训练样本,生成结构体系输入参数的最大数量采样点;针对采样点,利用建立的桩基桥梁有限元数值模型进行非线性地震响应分析,使用高斯过程替代模型模拟多年冻土场地桩基桥梁输入和输出关系,进而执行桩基桥梁的不确定性量化。基于统计变量和变异参数(coefficient of variation,COV)评估多年冻土场地桩基桥梁地震响应的不确定性。研究结果表明:(1) 桥梁结构参数随着变异参数由5%增加为30%时,桥梁结构的时程响应随之而增加,桥梁结构输入参数的变异性对多年冻土场地桩基桥梁的地震响应影响显著。(2) 随着桥梁结构体系输入参数变异性增加,相应的地震响应的变异性随之增加,桥梁结构体系输入参数变异性增加直接影响地震响应变异参数的变化。本文中所述多年冻土场地桩基桥梁地震响应不确定性量化分析可为同类构筑物的模拟提供分析方法和思路。

Abstract

In this study, uncertainty quantification of seismic response on pile-supported bridge structure in the permafrost region is carried out based on the finite element numerical model and seismic response characteristics of pile-supported bridge structure in the permafrost region. Firstly, the training samples of surrogate model for pile-supported bridge structure in the permafrost region are constructed using the experimental design method, which is used to generate maximum number of sampling points for uncertainty parameters. A Gaussian process surrogate model is used to simulate input-output relationship for physical processes of pile-supported bridge structure in the permafrost region, and then a reduced order surrogate model is used to perform uncertainty quantification. Seismic response uncertainty of pile-supported bridge structure in the permafrost region is assessed based on statistical variables and variational parameters. The study results showed that: (1) As coefficient of variation (COV) increases from 5% to 30%, time history response of bridge structure the consequent increase correspondingly. The parameter uncertainty of bridge structure has a significant effect on seismic response of pile-supported bridge structure in the permafrost region. (2) As the COV of input parameters for bridge structure are increased, the corresponding COV of seismic response is also increased. This indicated that the COV increase of input parameters for bridge structure directly affects the COV of seismic response. The uncertainty quantification analysis of pile-supported bridge structure in the permafrost region described in this study can provide analytical methods and ideas for the simulation of similar structure.

关键词

多年冻土 / 桩基础 / 地震 / 高斯过程替代模型 / 不确定性

Key words

Permafrost / Pile foundation / Earthquake / Gaussian process surrogate model / Uncertainty

引用本文

导出引用
李发达1,苏雷1,万华平2,凌贤长1. 多年冻土场地桩基桥梁地震响应不确定性量化分析[J]. 振动与冲击, 2023, 42(4): 204-211
LI Fada1,SU Lei1,WAN Huaping2,LING Xianzhang1. Uncertainty quantification of seismic response of a pile-supported bridge in the permafrost region[J]. Journal of Vibration and Shock, 2023, 42(4): 204-211

参考文献

[1] Vamvatsikos D, Fragiadakis M. Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty[J]. Earthquake Engineering & Structural Dynamics, 2010, 39(2): 141-163.
[2] Tondelli M, Rota M, Penna A, et al. Evaluation of uncertainties in the seismic assessment of existing masonry buildings[J]. Journal of Earthquake Engineering, 2012, 16(sup1): 36-64.
[3] Tubaldi E, Barbato M, Dall’Asta A. Influence of model parameter uncertainty on seismic transverse response and vulnerability of steel-concrete composite bridges with dual load path[J]. Journal of Structural Engineering, 2012, 138(3): 363-374.
[4] Gokkaya B U, Baker J W, Deierlein G G. Quantifying the impacts of modeling uncertainties on the seismic drift demands and collapse risk of buildings with implications on seismic design checks[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(10): 1661-1683.
[5] Padgett J E, DesRoches R. Sensitivity of seismic response and fragility to parameter uncertainty[J]. Journal of Structural Engineering, 2007, 133(12): 1710-1718.
[6] Soleimani F, Vidakovic B, DesRoches R, et al. Identification of the significant uncertain parameters in the seismic response of irregular bridges[J]. Engineering Structures, 2017, 141: 356-372.
[7] 万华平, 任伟新, 钟剑. 桥梁结构固有频率不确定性量化的高斯过程模型方法[J]. 中国科学: 技术科学, 2016, (009): 919-925.
WAN Hua-ping, REN Wei-xin, ZHONG Jian. Gaussian process model-based approach for uncertainty quantification of natural frequencies of bridge[J]. Scientia Sinica (Technologica), 2016, (009): 919-925.
[8] 王德斌, 李新, 孙治国, 等. 海底地震动对近海桥梁易损性影响[J]. 振动与冲击, 2021, 40(17): 131-136.
WANG De-bin, LI Xin, SUN Zhi-guo, et al. Effects of seabed ground motion on vulnerability of offshore bridges[J]. Journal of Vibration and Shock, 2021, 40(17): 131-136.
[9] Su L, Wan H P, Dong Y, et al. Efficient uncertainty quantification of wharf structures under seismic scenarios using gaussian process surrogate model[J]. Journal of 
Earthquake Engineering, 2021, 25(1): 1-22.
[10] 莫鋈. 桩土相互作用下高桩码头随机地震反应分析[D]. 重庆: 重庆交通大学, 2014.
MO Wu. Analysis of random seismic response for high-pile wharf with pile-soil interaction[D]. Chongqing: Chongqing Jiaotong University, 2014.
[11] 陈清军, 朱庆群. 土-桩-结构相互作用体系随机地震反应分析[J]. 力学季刊, 2004, 25(3): 417-423.
CHEN Qing-jun, ZHU Qing-qun. Random seismic response analysis of soil pile structure interaction system[J]. Chinese Quarterly of Mechanics, 2004, 25(3): 417-423.
[12] Karimi Z, Dashti S. Numerical and centrifuge modeling of seismic soil-foundation-structure interaction on liquefiable ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(1): 4015061.
[13] Yazdandoust M. Seismic performance of soil-nailed walls using a 1g shaking table[J]. Canadian Geotechnical Journal, 2018, 55(1): 1-18.
[14] 江辉, 张鹏, 黄磊, 等. 跨断层简支钢箱梁桥的概率性地震损伤特性研究[J]. 振动与冲击, 2021, 40(15): 253-262.
JIANG Hui, ZHANG Peng, HUANG Lei, et al. Probabilistic seismic damage characteristics of simply supported steel box girder bridge across fault[J]. Journal of Vibration and Shock, 2021, 40(15): 253-262.
[15] 周爱红. 桩-土-结构相互作用体系的随机地震响应分析及动力可靠度研究[D]. 北京: 北京交通大学, 2008.
ZHOU Ai-hong. The stochastic seismic response analysis and dynamic reliability study on pile-soil-structure interaction system[D]. Beijing: Beijing Jiaotong University, 2008.
[16] 万华平, 任伟新, 颜王吉. 桥梁结构动力特性不确定性的全局灵敏度分析的解析方法[J]. 振动工程学报, 2016, (3): 429-435.
WAN Hua-ping, REN Xin-wei, YAN Wang-ji. Analytical global sensitivity analysis for uncertainty in structural dynamic properties of bridges[J]. Journal of Vibration Engineering, 2016, (3): 429-435.
[17] Wan H P, Ren W X, Todd M D. An efficient metamodeling approach for uncertainty quantification of complex systems with arbitrary parameter probability distributions[J]. International Journal for Numerical Methods in Engineering, 2017, 109(5): 739-760.
[18] Berdnikov A S, Turtia S B, Compagner A. The combination of LPτ vectors and shift register RNGs as a way to generate independent random sequences for parallel computations[J]. Computer Physics Communications, 1999, 121: 612-612.
[19] Joe S, Kuo F Y. Constructing sobol sequences with better two-dimensional projections[J]. SIAM Journal on Scientific Computing, 2008, 30(5): 2635-2654.
[20] Shukhman B. Generation of quasi-random (LPτ) vectors for parallel computation[J]. Computer Physics Communications, 1994, 78(3): 279-286.
[21] Antonov I A, Saleev V M. An economic method of computing LPτ-sequences[J]. USSR Computational Mathematics and Mathematical Physics, 1979, 19(1): 252-256.
[22] Liu B, Zhang Q, Gielen G G E. A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(2): 180-192.
[23] Wan H P, Ren W X. Parameter selection in finite-element-model updating by global sensitivity analysis using gaussian process metamodel[J]. Journal of Structural Engineering, 2015, 141(6): 4014164.
[24] Ge X, Yang Z, Still B, et al. Experimental study of frozen soil mechanical properties for seismic design of pile foundations[C]// Cold Regions Engineering 2012 American Society of Civil Engineers and Canadian Society for Civil Engineering. 2012. 478-488.
[25] Enright M P, Frangopol D M. Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion[J]. Engineering Structures, 1998, 20(11): 960-971.
[26] Nour A, Slimani A, Laouami N, et al. Finite element model for the probabilistic seismic response of heterogeneous soil profile[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(5): 331-348.
[27] Andrade J E, Borja R I. Quantifying sensitivity of local site response models to statistical variations in soil properties[J]. Acta Geotechnica, 2006, 1(1): 3-14.
[28] Kayser M, Gajan S. Application of probabilistic methods to characterize soil variability and their effects on bearing capacity and settlement of shallow foundations: state of the art[J]. International Journal of Geotechnical Engineering, 2014, 8(4): 352-364.
[29] Biondini F, Bontempi F, Frangopol D M, et al. Reliability of material and geometrically non-linear reinforced and prestressed concrete structures[J]. Computers and Structures, 2004, 82(13): 1021-1031.
[30] Eldin M N, Kim J. Sensitivity analysis on seismic life-cycle cost of a fixed-steel offshore platform structure[J]. Ocean Engineering, 2016, 121: 323-340.
[31] Crespo-Minguillón C, Casas J R. Fatigue reliability analysis of prestressed concrete bridges[J]. Journal of Structural Engineering, 1998, 124(12): 1458-1466.

PDF(2325 KB)

Accesses

Citation

Detail

段落导航
相关文章

/