阻抗和厚度梯度变化准周期结构水下声学特性研究

杜逸眉1,胡博1,2,3,李明杰1,时胜国1,2,3,时洁1,2,3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 212-218.

PDF(2542 KB)
PDF(2542 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 212-218.
论文

阻抗和厚度梯度变化准周期结构水下声学特性研究

  • 杜逸眉1,胡博1,2,3,李明杰1,时胜国1,2,3,时洁1,2,3
作者信息 +

A study on underwater acoustic characteristics of quasi-periodic structure based on gradient change of impedance and thickness

  • DU Yimei1,HU Bo1,2,3,LI Mingjie1,SHI Shengguo1,2,3,SHI Jie1,2,3
Author information +
文章历史 +

摘要

周期结构在减振降噪、滤波等方面具有很大的应用潜力。功能梯度材料是近年出现的具有优良性能的新型复合材料。为了满足水下低频宽带应用的要求,本文将周期结构和功能梯度材料相结合,提出了厚度和阻抗梯度变化的准周期结构。利用传递矩阵法,对厚度和阻抗梯度变化的准周期结构进行了反射系数的仿真,与周期结构带隙特性进行了比较,分析了厚度与阻抗对准周期结构带隙的影响,最后根据仿真结果制备了实验样品,进行了水下验证实验。研究结果表面:厚度和阻抗梯度变化的准周期结构,第一带隙具有更低的起始频率与更高的截止频率,阻抗梯度变化对准周期结构带隙特性的影响大于厚度梯度变化。这些结果可以为利用准周期结构实现水下低频宽带的减振降噪提供参考。

Abstract

Periodic structure has great application potential in vibration and noise reduction, filtering, etc. Functionally graded materials (FGMs) are novel composite materials with excellent properties in recent years. This paper combines periodic structure with functionally graded materials, and proposes a quasi-periodic structure with gradient changes of thickness and impedance to meet the requirements of underwater low-frequency broadband applications. Firstly, the reflection coefficient of the quasi-periodic structure with gradient change of thickness and impedance is simulated using the transfer matrix method. The band gap characteristics of the quasi-periodic structure and the periodic structure are compared, and the influence of thickness and impedance on the band gap of the quasi-periodic structure is analyzed. Finally, experimental samples were prepared and underwater verification experiments were carried out. The results show that the first band gap of the quasi-periodic structure with gradient change of thickness and impedance has a lower starting frequency and a higher cutoff frequency. The impedance gradient change has greater effect than the thickness gradient change on the band gap characteristics of the quasi-periodic structure. These results can provide reference for quasi-periodic structure application on vibration and noise reduction of underwater low-frequency broadband.

关键词

阻抗 / 梯度变化 / 周期结构 / 减振降噪

Key words

impedance / gradient change / periodic structure / vibration and noise reduction

引用本文

导出引用
杜逸眉1,胡博1,2,3,李明杰1,时胜国1,2,3,时洁1,2,3. 阻抗和厚度梯度变化准周期结构水下声学特性研究[J]. 振动与冲击, 2023, 42(4): 212-218
DU Yimei1,HU Bo1,2,3,LI Mingjie1,SHI Shengguo1,2,3,SHI Jie1,2,3. A study on underwater acoustic characteristics of quasi-periodic structure based on gradient change of impedance and thickness[J]. Journal of Vibration and Shock, 2023, 42(4): 212-218

参考文献

[1] Murray A R J, Summers I R, Sambles J R, et al. An acoustic double fishnet using Helmholtz resonators[J]. Journal of the Acoustical Society of America, 2014, 136(3): 980-984.
[2] Wang Y, Zhu X, Zhang T, et al. A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film[J]. Applied Energy, 2018, 230(1): 52-61.
[3] Chen X, Cai L, Wen J H. Controlling flexural waves in thin plates by using transformation acoustic metamaterials[J]. Chinese Physics B, 2018, 27(5): 513-517.
[4] 王晶晶,李晓东. 声学二维平面周期结构的吸声性能建模[J]. 声学技术,2016, 41(5): 620-627.
Wang J J, Li X D. Simulation model of sound absorption of two-dimensional periodic flat surface[J]. Acta Acustica, 2016, 41(5): 620-627.
[5] Fu T, Wu X, Xiao Z M, et al. Study on dynamic instability characteristics of functionally graded material sandwich conical shells with arbitrary boundary conditions[J]. Mechanical Systems and Signal Processing, 2021,151(5): 107438.
[6] Fu T, Wu X, Xiao Z M, et al. Vibro-acoustic characteristics of eccentrically stiffened functionally graded material sandwich cylindrical shell under external mean fluid[J]. Applied Mathematical Modelling, 2021, 91: 214-231.
[7] Sahu S A, Singhal A, Chandhary S. Surface wave propagation in functionally graded piezoelectric material: An analytical solution[J]. Journal of Intelligent Material Systems and Structures, 2017, 29(3): 423-437.
[8] 刘志宏,盛美萍. 水下多层均匀材料垂直入射的声特性分析[J]. 噪声与振动控制,2005(2): 11-13.
Su X L, Gao Y W. Analysis of sound characteristics of a normal incidence plane wave on isotropic symmetric plate in water[J]. Noise and Vibration Control, 2005(2): 11-13.
[9] Singh B K, Pandey P C. Tunable temperature-dependent THz photonic bandgaps and localization mode engineering in 1D periodic and quasi-periodic structures with graded-index materials and InSb[J]. Journal of the Acoustical Society of America, 2018, 57(28): 8171-8181.
[10] Timorian S, Ouisse M, Bouhaddi N, et al. Numerical investigations and experimental measurements on the structural dynamic behaviour of quasi-periodic meta-materials [J]. Mechanical Systems and Signal Processing, 2020, 136(3): 106516.1-106516.31.
[11] Rajput N S, Baik H, Tamalampudi S R, et al. Revealing the Quasi-Periodic Crystallographic Structure of Self-Assembled SnTiS 3 Misfit Compound[J]. The Journal of Physical Chemistry C, 2014, 125(3): 180-984.
[12] 肖绪洋,陈润平,夏继宏,席锋. 弹性波在对称准周期结构固/液声子晶体中的传播[J]. 振动与冲击,2014, 33(15): 114-118.
Xiao X Y, Chen R P, Xia J H, Xi F. Propagation of elastic wave in a symmetrical qusai-periodic phononic crystal composed of solid/liguid[J]. Journal of Vibration and Shock, 2014, 33(15): 114-118.
[13] Liu Y. Sound transmission through triple-panel structures lined with poroelastic materials[J]. Journal of Sound and Vibration, 2015, 339(3): 376-395.
[14] Liu Y, Sebastian A. Effects of external and gap mean flows on sound transmission through a double-wall sandwich panel[J]. Journal of Sound and Vibration, 2015, 344: 399-415.
[15] 乔厚,何锃,张恒堃,彭伟才,江雯. 二维含多孔介质周期复合结构声传播分析[J]. 物理学报, 2019, 68(12): 128101.
Qiao H, He Z, Zhang H K, Peng W C, Jiang W. Sound transmission in two-dimensional periodic poroelastic structures[J]. Acta Physica Sinica, 2019, 68(12): 128101.
[16] 赵宏刚,刘耀宗,温激鸿,郁殿龙,温熙森. 含有周期球腔的黏弹性覆盖层消声性能分析[J]. 物理学报,2007, 56(8): 4700- 4707.
Zhao H G, Liu Y Z, Wen J H, Yu D L, Wen X S. Analysis of the anechoic properties of viscoelastic coatings with periodically distributed cavities[J]. Acta Physica Sinica, 2007, 56(8): 4700- 4707.
[17] 祁鹏山,杜军,姜久龙,等. 层状双周期结构声子晶体带隙特性研究[J]. 声学技术,2016, 35(4): 303-307.
Qi P S, Du J, Jiang J L, et al. Band gap characteristics of the layered phononic crystal with double-cycle structure[J]. Technical Acoustics, 2016, 35 (4): 303-307.
[18] Sun Y, Hu B. Reflection and Absorption of the Medium with Gradient Change of Impedance[J]. Applied Mechanics and Materials, 2014, 536-537: 887-891.
[19] Hu B, Yang D S, Sun Y, et al. Acoustic characteristics of the medium with gradient change of impedance[C]. Lyon France, AIP Conference Proceedings, 2015, 030008.1-030008.4.
[20] Hu B, Wang M R, Du Y M. The influence of impedance mismatch of the medium with gradient change of impedance on acoustic characteristics[C]. Leman France, 2nd Franco- Chinese Acoustic Conference, 2019, 09005.1-09005.5.
[21] Wang S B, Hu B, Du Y M. Sound absorption of periodically cavities with gradient changes of radii and distances between cavities in a soft elastic medium[J]. Applied Acoustics, 2020, 170: 107501.1-107501.8.
[22] Glacet A, Tanguy A, Réthoré J. Vibrational properties of quasi-periodic beam structures[J]. Journal of the Acoustical Society of America, 2019, 442: 624-644.
[23] Cui H C, Gao Q, Li X L, et al. A novel method for transient heat conduction in a quasi-periodic structure with nonlinear defects[J]. Journal of Heat Transfer, 2020, 142(12): 124502.
[24] Fontanela F, Grolet A, Salles L, et al. Computation of quasi-periodic localised vibrations in nonlinear cyclic and symmetric structures using harmonic balance methods[J]. Journal of Sound and Vibration, 2019, 438: 54-65.
[25] Dong H, Nie Y F, Cui J Z, et al. Second-order two-scale analysis and numerical algorithm for the damped wave equations of composite materials with quasi-periodic structures[J]. Applied Mathematics and Computation, 2017, 298: 201-220.
[26] 宿星亮,高原文. 含有功能梯度材料的一维声子晶体弹性波带隙研究[J]. 固体力学学报,2012, 33(1): 75-80.
Su X L, Gao Y W. Research on band gaps of one-dimension phononic crystals with functionally graded materials[J]. Chinese Jouranl of Solid Mechanics, 2012, 33(1): 75-80.
[27] Nguyen B H, Zhuang C, Park H S, et al. Tunable topological bandgaps and frequencies in a pre-stressed soft phononic crystal[J]. Journal of Applied Physics, 2019, 125(9): 095106.1-095106.14.
[28] Badreddine A M, Sun J H, Lin F S, et al. Hybrid phononic crystal plates for lowering and widening acoustic band gaps[J]. Ultrasonics, 2014, 54(8): 2159-2164.
[29] D’Alessandro L, Belloni E, Ardito R, et al. Modeling and experimental verification of an ultra-wide bandgap in 3D phononic crystal[J]. Applied Physics Letters, 2016, 109(22): 221907.1-221907.4.
[30] Lee I K, Kim Y J, Oh J H, et al. One-dimensional broadband phononic crystal filter with unit cells made of two non-uniform impedance-mirrored element[J]. AIP Advances, 2013, 3(2): 022105.1-22105.9.

PDF(2542 KB)

Accesses

Citation

Detail

段落导航
相关文章

/