针对机械振动无线传感器网络(wireless sensor networks, WSN)在传输大量数据时,每个数据包均采用确认方式传输导致高传输能耗的问题,提出了一种大量数据自适应传输控制方法。首先,通过数据分组检测机制减少传输确认帧带来的额外能耗,并通过实验确定最佳分组数量,避免浪费无线传感器网络节点有限的存储资源;其次,利用帧控制域特定标志位实现丢包状态通知,在不引入额外数据帧的情况下告知发送节点丢包状态,避免反馈信息包下发冲突,并优化反馈信息包的退避指数,降低丢包节点因反馈信息包下发延迟导致的侦听能耗;最后,通过最小二乘法拟合丢包率与链路质量指示的关系,节点根据当前传输链路质量自适应选择最佳传输模式。实验结果表明所提传输方法可有效降低数据传输能耗并提升传输速率。
Abstract
Aiming at the problem of high transmission energy consumption when each data packet is transmitted in Acknowledgement mode when the mechanical vibration wireless sensor network transmits a large amount of data, Adaptive Transmission Control Method of Large-scale Data is proposed. First, using the grouped data packet detection mechanism to reduce the additional energy consumption caused by the transmission of acknowledgement frames, the determining optimal number of packets through experiments to avoid wasting the limited storage resources of Wireless Sensor Networks nodes; Secondly, using the specific flag bit of the frame control domain to inform the sending node of the packet loss status without additional data frames, which avoid feedback information packet delivery conflicts, then optimizing the feedback information packet back-off index to reduce the listening energy consumption caused by the delay of feedback information packet delivery; Finally, fitting the relationship between packet loss rate and link quality indicator by least square method for node’s adaptively selection of the best transmission mode. The experimental results show that the proposed method can effectively reduce the energy consumption of data transmission and increase the transmission rate.
关键词
机械振动监测 /
ACK/NACK /
传输能耗 /
无线传感器网络 /
最小二乘法
{{custom_keyword}} /
Key words
words: mechanical vibration monitoring /
acknowledgement / negative acknowledgement( ACK/NACK) /
transmission energy consumption /
wireless sensor networks (WSNs) /
ordinary least squares
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Huang Yi ,Tang Baoping, Deng, et al, Lei.Fuzzy Analytic Hierarchy Process-Based Balanced Topology Control of Wireless Sensor Networks for Machine Vibration Monitoring[J].IEEE SENSORS JOURNAL,2020,20(15):8256-8264.
[2] Lee H , Chang Y, Huang Y. A Reliable Wireless Sensor System for Monitoring Mechanical Wear-Out of Parts[J]. IEEE Transactions on Instrumentation & Measurement, 2014, 63(10):2488-2497.
[3] Lei X, Wu Y. Research on mechanical vibration monitoring based on wireless sensor network and sparse Bayes[J]. EURASIP Journal on Wireless Communications and Networking, 2020, 2020(1): 1-13.
[4] 汤宝平,黄庆卿,邓蕾等.机械设备状态监测无线传感器网络研究进展[J].振动.测试与诊断,2014,34(1):1-7.
TANG Bao-ping, HUANG Qing-qing, DENG Lei, et al. Research progress and challenges of wireless sensor networks for machinery equipment condition monitoring[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(1): 1-7.
[5] Li H, Xu G, Xu G. Mechanical Vibration Monitoring System Based on Wireless Sensor Network[J]. International Journal of Online Engineering, 2018, 14(6).
[6] Ward J R, Younis M. A metric for evaluating base station anonymity in acknowledgement-based wireless sensor networks[C]//2014 IEEE Military Communications Conference. IEEE, 2014: 216-221.
[7] Zhang L, Ferrero R, Sanchez E R, et al. Performance analysis of reliable flooding in duty‐cycle wireless sensor networks[J]. Transactions on Emerging Telecommunications Technologies, 2014, 25(2): 183-198.
[8]刘耀先,孙毅,武昕等. 面向配电网故障检测的无线传感网络可靠路由方法[J].电网技术, 2015, 39(12): 3609-3614.
Liu Yao-xian, Sun Yi, Wu Xin, et al. A Reliable WSN Routing Method for Distribution Network Fault Detection[J]. Power System Technology,2015, 39(12): 3609-3614.
[9] Dong M, Ota K, Liu A, et al. Joint optimization of lifetime and transport delay under reliability constraint wireless sensor networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2015, 27(1): 225-236.
[10]张梦娜,刘广钟.SE-MAC:一种节能的水下传感器网络MAC协议[J].计算机技术与发展,2015,25(3):67-70.
Zhang Meng-na, Liu Guang-zhong, SE-MAC: An Energy Efficient MAC Protocol for Underwater Sensor Networks[J] Computer Technology and Development, 2015,25(3):67-70.
[11] Barroca N, Velez F J, Borges L M, et al. Performance enhancement of IEEE 802.15. 4 by employing RTS/CTS and frame concatenation[J]. IET Wireless Sensor Systems, 2020, 10(6): 308-319.
[12] Zhang J, Long J. An energy-aware hybrid ARQ scheme with multi-ACKs for data sensing wireless sensor networks[J]. Sensors, 2017, 17(6): 1366.
[13] Liu Y, Liu A, Chen Z. Analysis and improvement of send-and-wait automatic repeat-request protocols for wireless sensor networks[J]. Wireless Personal Communications, 2015, 81(3): 923-959.
[14] 朱亮亮,汤宝平,黄艺等.机械振动无线传感器网络大量数据传输发射功率优化控制方法[J].振动与冲击,2020,39(17):275-280.
Zhu Liang-liang, Tang Bao-ping, Huang Yi, et al. Transmit power optimization control method for a mechanical vibration wireless sensor network with a lot of transmission data[J] Journal of Vibration and Shock, 2020,39(17):275-280.
[15] 曾超,邓蕾,张又进,等.机械振动无线传感器网络数据分块大小研究[J].仪器仪表学报, 2016, 37(007):1556-1563.
Zeng Cao, Deng Lei, Zhang You-jin, et al. Research on the data block size of mechanical vibration wireless sensor networks[J] Chinese Journal of Scientific Instrument, 2016, 37(007):1556-1563.
[16] IEEE 802.15.4-2015. IEEE Standard for Low-Rate Wireless Networks[S]. New York: Institute of Electrical and Electronic Engineers,2016
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}