微重力模拟下的地面试验是验证隔振器能否在轨可靠工作的重要措施之一。通常采用悬吊法进行微重力模拟时,悬吊弹簧局部模态处的振动很容易引入隔振上平台。针对悬吊弹簧阻尼低,局部模态振动限制主动隔振控制性能的问题,采用PVC胶带与悬吊弹簧并联的方式提高弹簧阻尼; 建立了微重力模拟装置中加胶带悬吊弹簧的连续动力学模型,对比研究纯悬吊弹簧模态振动和加胶带悬吊弹簧模态振动对隔振上平台的影响;搭建了地面实验验证系统并通过实验验证了悬吊弹簧动力学模型的准确性,实验结果表明,粘贴PVC胶带能够起到增加悬吊弹簧阻尼的效果,可以将弹簧的模态振动降低到1ug以下,从而减小模态振动对被动隔振的影响,并有效缓解模态振动对主动隔振控制性能的限制,这种状态能够更准确的反应在轨工作状态。
Abstract
The ground test with microgravity simulation is one of the important measures to verify whether the vibration isolator can work reliably in orbit. When the suspension method is usually used for microgravity simulation, the vibration of the suspension spring at the local mode is easy to be introduced into the vibration isolation platform. With the problem, firstly, the modal damping of spring is improved by the parallel connection of PVC tape and suspension spring. Then the continuous dynamic model is established for the tape suspension spring of the microgravity simulator, and the effects are compared for the modal vibration of pure suspension spring and tape suspension spring on vibration isolation platform. Finally, the ground experimental system is built, and the accuracy of the dynamic model of the suspension spring is verified through experiments. The experimental results show that pasting PVC tape can increase the damping of the suspension spring and reduce the modal vibration of the spring below 1ug, so as to reduce the impact of modal vibration on passive vibration isolation and effectively alleviate the limitation of modal vibration on the control performance of the active vibration isolation controller. As a result, the state with microgravity simulation can more accurately reflect the working state in orbit.
关键词
微重力模拟 /
隔振器 /
悬吊法 /
弹簧 /
局部模态
{{custom_keyword}} /
Key words
microgravity simulation /
vibration isolator /
suspension method /
spring /
local modal
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 邓峰岩, 和兴锁, 张娟等. 微振动对空间实验室微重力环境的影响研究[J]. 振动与冲击, 2005, 24(003):103-107.
DENG Fengyan, He Xingsuo, ZHANG Juan et al. Influence of micro-vibration on microgravity environment in Space Laboratory [J]. Journal of Vibration and Shock, 2005, 24(003):103-107.
[2] 从强. 空间机构地面重力补偿设备跟踪研究[J]. 航天器环境工程 , 2012,29(1): 92-99.
Cong qiang. Research on tracking of ground gravity compensation equipment for space mechanism [J]. Spacecraft Environment Engineering, 2012,29(1): 92-99.
[3] Akin D L , Carignan C R . The reaction stabilization of on-orbit robots[J]. Control Systems IEEE, 2000, 20(6):19-33.
[4] Schmitz E . Modeling and control of a planar manipulator with an elastic forearm[C]// IEEE International Conference on Robotics & Automation. IEEE Comput. Soc. Press, 2002: 894 - 899.
[5] Schwartz J L , Hall C D , Peck M A . Historical Review of Air-Bearing Spacecraft Simulators[J]. Journal of Guidance Control and Dynamics, 2003, 26(4):513-522.
[6] Chen C I , Chen Y T , Wu S C , et al. Experiment and Simulation in Design of the Board-Level Drop Testing Tower Apparatus[J]. Experimental Techniques, 2012, 36(36): 60–69.
[7] Nicolau E , Poventud-Estrada C M , Arroyo L , et al. Microgravity effects on the electrochemical oxidation of ammonia: A parabolic flight experiment[J]. Electrochimica Acta, 2012, 75(none):88-93.
[8] 曲健刚. 悬吊式低重力模拟系统控制研究[D].哈尔滨工业大学,2017.
Qu Jiangang. Research on Control of Suspended Low Gravity Simulation System [D]. Harbin Institute of Technology,2017.
[9] 高海波,牛福亮,刘振等.悬吊式微低重力环境模拟技术研究现状与展望[J].航空学报,2021,42(01): 523911.
Gao Haibo, Niu Fuliang, Liu Zhen et al. Suspended micro-low gravity environment simulation technology:Status quo and prospect [J].Acta Aeronautica Et Astronautica Sinica, 201,42(01): 523911.
[10] 赵本华, 张斌, 白忠奕,等. 航天器舱门零重力环境模拟卸载系统设计分析[J]. 宇航总体技术, 2019, 10 (4): 21-27.
Zhao Benhua, Zhang Bin, Bai Zhongyi, et al. Design and analysis of simulated unloading system for spacecraft hatch in zero gravity environment [J]. Astronautical Total Technology, 2019, 10 (4): 21-27.
[11] 杨毅, 常勇, 王洪光,等. 全景相机转台低重力补偿装置研究[J]. 机械设计与制造, 2018, 0 (9):16-20.
Yang Yi, Chang Yong, WANG Hongguang, et al. Research on Low Gravity Compensation Device of Panoramic Camera Turntable. Machinery Design & Manufacture, 2018, 0 (9):16-20.
[12] AIAA. Ground-Based Simulations of ISS Exercise Countermeasures at NASA Glenn Research Center's Exercise Countermeasures Laboratory: Compliant Interface Dynamics Using a Floating Treadmill - 46th AIAA Aerospace Sciences Meeting and Exhibit (AIAA)[C]// Aiaa Aerospace Sciences Meeting & Exhibit. 2008.
[13] Hewes D E , Letko W , Spady A . The problems of man's adaptation to the lunar environment. 1966.
[14] 刘荣强, 郭宏伟, 邓宗全. 空间索杆铰接式伸展臂设计与试验研究[J]. 宇航学报, 2009(01):315-320.
Liu Rongqiang, Guo Hongwei, Deng Zongquan. Space cable-strut deployable articutlated mast design and experimental study[J]. Journal of Astronautics, 2009(01):315-320.
[15] Brown H B, Jr, Dolan J M. A Novel Gravity Compensation System for SpaceRobots[C]// ASCE Specialty Conference on Robotics for Challenging Environments .[S.l.]: ASCE ,1994.
[16] 彭浩, 何柏岩.星载环形天线重力补偿新方法[J]. 中国机械工程, 2019, 30(04):379-384.
Peng Hao, He Baiyan. A New Gravity Compensation Method for Spaceborne Ring Antenna. China Mechanical Engineering, 2019, 30(04):379-384.
[17] Pyatibratov G Y , Kravchenko O A , Kivo A M . Design Principles and Implementation of Advanced Simulators for Training Astronauts to Work in Zero or Low Gravity Conditions[J]. Procedia Engineering, 2016, 150:1410-1414.
[18] Liu Z , Niu F , Gao H , et al. Design, analysis, and experimental validation of an active constant-force system based on a low-stiffness mechanism[J]. Mechanism and Machine Theory, 2018, 130:1-26.
[19] Matichard, Lantz, Mittleman, et al. Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance[J]. Classical and Quantum Gravity,2015,32(18).
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}