MFC驱动主动反射器形面的有限时间动态变形控制

卢志荣1,王晓明1,周文雅2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 325-332.

PDF(1739 KB)
PDF(1739 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 325-332.
论文

MFC驱动主动反射器形面的有限时间动态变形控制

  • 卢志荣1,王晓明1,周文雅2
作者信息 +

Finite-time dynamic shape control of an active reflector surface actuated by MFC

  • LU Zhirong1, WANG Xiaoming1, ZHOU Wenya2
Author information +
文章历史 +

摘要

利用智能压电作动器可实现反射面天线的形面主动调整,提升形面精度和信号传输性能。常规的静态形面控制策略仅能估计作动器的末端电压值,实际电压加载过程易引发柔性反射面结构的瞬态动力学响应和残余振动,难以实现高精度动态形面控制效果,且影响系统稳定性。为此,该研究以宏纤维复合材料(macro fiber composites ,MFC)驱动的抛物面形反射器为对象,研究有限时间的动态形面控制算法。首先,基于有限元模型推导控制方程,并将控制问题转化为有限时间的时变LQ终端控制和跟踪控制问题,进而通过求解微分Riccati方程组(differential Riccati equations ,DREs)得到反馈–前馈时变控制律。结果表明,利用所提有限时间动态变形控制算法,可实现连续、平滑的反射器动态形面调整效果,避免了电压加载过程激发的结构附加振动,可有效提升这类主动反射器的静态、动态控制性能。

Abstract

Shape of reflector antenna can be actively adjusted to improve shape accuracy and signal transmissibility by smart piezoelectric actuator. Conventional static shape control strategy only can evaluate the value of terminal voltage, but transient dynamic response and residual vibration are easily excited during voltage loading process. It is difficult to achieve high accurate dynamic shape control effect by the static control strategy, even it would affect the stability of system. To this end, the parabolic reflector actuated by macro fiber composites (MFC) is used as the object for investigating the finite-time dynamic shape control algorithm. First, the dynamic equations are derived based on the finite element method, and the control problem is transformed into the finite time time-varying LQ terminal control and tracking control problem, and then the feedforward and feedback time-varying control law is obtained by solving the differential Riccati equations (DREs). The results show that the proposed finite time dynamic shape control algorithm can realize continuous and smooth dynamic surface adjustment effect of the active reflector with the avoidance of the excitation of incidental vibrations during voltage loading process, and effectively improve the static and dynamic control performance of the active reflector.

关键词

主动反射器 / 形面控制 / 宏纤维复合材料(MFC) / 附加振动 / 有限时间

Key words

active reflector / shape control / macro fiber composites (MFC) / incidental vibration / finite time

引用本文

导出引用
卢志荣1,王晓明1,周文雅2. MFC驱动主动反射器形面的有限时间动态变形控制[J]. 振动与冲击, 2023, 42(4): 325-332
LU Zhirong1, WANG Xiaoming1, ZHOU Wenya2. Finite-time dynamic shape control of an active reflector surface actuated by MFC[J]. Journal of Vibration and Shock, 2023, 42(4): 325-332

参考文献

[1] WANG C S, LI H H, YING K, et al. Active surface compensation for large radio telescope antennas [J]. International Journal of Antennas and Propagation, 2018, 2018(1): 3903412.
[2] 孙国钟, 孙士勇, 裴英博. 基于MFC前馈补偿的抛物面天线型面控制方法 [J]. 压电与声光, 2019, 41(1): 146-9.
 SUN Guozhong, SUN Shiyong, PEI Yingbo. Paraboloid antennas surface control method based on MFC feedforward compensation [J]. Piezoelectrics & Acoustooptics, 2019, 41(1): 146-149.
[3] 王从思, 刘鑫, 王伟, 等. 大型反射面天线温度分布规律及变形影响分析 [J]. 宇航学报, 2013, 34(11): 1523-1528.
 WANG Congsi, LIU Xin, WANG Wei, et al. Analysis method for temperature distribution characteristic and thermal distortion of large reflector antennas [J]. Journal of Astronautics, 2013, 34(11): 1523-1528.
[4] 游斌弟, 赵志刚, 李文博, 等. 空间热载荷作用下星载天线耦合动态影响分析 [J]. 振动与冲击, 2012, 31(17): 61-66.
 YOU Bindi, ZHAO Zhigang, LI Wenbo, et al. Coupling dynamic performance analysis for a satellite antenna system with space thermal load [J]. Journal of  Vibration and Shock, 2012, 31(17): 61-66.
[5] 王波, 王朋朋, 姚永田, 等. 一种伞状天线反射器型面热变形测量及分析模型在轨预示 [J]. 航天器环境工程, 2020, 37(3): 269-274.
 WANG Bo, WANG Pengpeng, YAO Yongtian, et al. Thermal deformation testing for an umbrella antenna reflector and on-orbit prediction with verified model [J]. Spacecraft Environment Engineering, 2020, 37(3): 269-274.
[6] 黄志荣, 宋燕平. 型面可调整反射器结构与调整技术概述 [J]. 空间电子技术, 2010, 7(3): 84-89.
 HUANG Zhirong, SONG Yanping. A review on the structure and adjustment technology of an adjustable reflector [J]. Space Electronic Technology, 2010, 7(3): 84-89.
[7] 宋祥帅, 王恩美, 穆瑞楠, 等. 格栅反射器型面的主动控制 [J]. 航空学报, 2018, 39(6): 106-114.
 SONG Xiangshuai, WANG Enmei, MU Ruinan, et al. Active shape control of a reflector with PZT actuators assembled on ribs [J]. Acta Aeronautica et Astronautica Sinic, 2018, 39(6): 106-114.
[8] 伍科, 张华振, 兰澜, 等. CFRP反射器型面主动控制和作动器位置优化 [J]. 航空学报, 2019, 40(7): 76-91.
 WU Ke, ZHANG Huazhen, LAN Lan, et al. Shape active control of a CFRP reflector and placement optimization of actuator [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 76-91.
[9] 张顺琦, 张书扬, 陈敏, 等. 压电智能薄壁结构电致材料和几何非线性建模与分析 [J]. 上海大学学报(自然科学版), 2020, 26(1): 58-68.
 ZHANG Shunqi, ZHANG Shuyang, CHEN Min, et al. Analysis and modeling of piezoelectric laminated smart structures with both geometric and electroelastic material nonlinearities [J]. Journal of Shanghai University (Natural Science Edition), 2020, 26(1): 58-68.
[10] JIANG X J, PAN F Q, FAN Y S, et al. Active adjustment of surface accuracy for a large cable-net structure by shape memory alloy [J]. Materials, 2019, 12(16): 2619.
[11] XUN G B, PENG H J, WU S N, et al. Active shape adjustment of large cable-mesh reflectors using novel fast model predictive control [J]. Journal of Aerospace Engineering, 2018, 31(4): 4018038.
[12] SONG X S, TAN S J, WANG E M, et al. Active shape control of an antenna reflector using piezoelectric actuators [J]. Journal of Intelligent Material Systems and Structures, 2019, 30(18/19): 2733-2747.
[13] SONG X S, CHU W M, TAN S J, et al. Adaptive shape control for antenna reflectors based on feedback error learning algorithm [J]. Aiaa Journal, 2020, 58(7): 3229-40.
[14] HUANG R, SUN B B. Active control of the space-borne antenna reflector considering thermal load [J]. Journal of Physics Conference, 2021, 1875: 012004.
[15] 游斌弟, 赵志刚, 魏承, 等. 柔性天线面对星载天线的扰动研究 [J]. 振动与冲击, 2011, 30(7): 107-11.
 YOU Bindi, ZHAO Zhigang, WEI Cheng, et al. Disturbance of flexible antenna surface on a satellite antenna [J]. Journal of Vibration and Shock, 2011, 30(7): 107-11.
[16] 王晓明, 周文雅, 寻广彬, 等. 带有振动抑制的压电结构动态形状主动控制 [J]. 宇航学报, 2017, 38(2): 185-191.
 WANG Xiaoming, ZHOU Wenya, XUN Guangbin, et al. Dynamic shape control of piezoelectric structures with vibration suppression [J]. Journal of Astronautics, 2017, 38(2): 185-191.
[17] 吴志刚,谭述君, 彭海军. 现代控制系统设计与仿真 [M]. 北京: 科学出版社, 2012.
[18] ?Smart Material Corporation, https://www.smart-material.com/MFC-product-mainV2.html.
[19] 刘书田, 林哲祺. 考虑作动器联接方式的结构形状控制优化 [J]. 工程力学, 2009, 26(2): 227-33.
 LIU Shutian, LIN Zheqi. Design optimization of actuatior- controller linkage scheme for morphing structural shapes [J]. Engineering Mechanics, 2009, 26(2): 227-33.
[20] ALLIK H, HUGHES T J R. Finite element method for piezoelectric vibration [J]. International Journal for Numerical Methods in Engineering, 1970, 2(2): 151-157.
[21] 刘书田, 程耿东. 复合材料应力分析的均匀化方法 [J]. 力学学报, 1997 (3): 51-58.
 LIU Shutian, CHENG Gengdong. Homogenization method of stress analysis of composite structures [J]. Acta Mechanica Sinica, 1997 (3): 51-58.
[22] 李敏, 陈伟民, 王明春, 等. 压电驱动的载荷比拟方法 [J]. 中国科学(E辑:技术科学), 2009, 39(11): 1810-1817.
 LI Min, CHEN Weimin, WANG Mingchun, et al. A load simulation method of piezoelectric actuator in FEM for smart structures [J]. Scientia Sinica(Technologica), 2009, 39(11): 1810-1817.
[23] 谭述君, 段佳佳, 夏永江, 等. 基于精细积分理论与算法体系的时变最优控制方案工程应用 [J]. 计算机应用与软件, 2009, 26(2): 1-3.
 TAN Shujun, DUAN Jiajia, XIA Yongjiang, et al. Engineering applicationo of time-varying optimal control based on precise integration method and alogorithm system [J]. Computer Applications and Software, 2009, 26(2): 1-3.
 

PDF(1739 KB)

336

Accesses

0

Citation

Detail

段落导航
相关文章

/