基于实时退化量的数控机床状态维修检测间隔期决策研究

任丽娜,陈锦涛,李建华

振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 81-87.

PDF(1151 KB)
PDF(1151 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (4) : 81-87.
论文

基于实时退化量的数控机床状态维修检测间隔期决策研究

  • 任丽娜,陈锦涛,李建华
作者信息 +

A study on the inspection interval decision of CNC machine tools condition-based maintenance based on real-time degradation

  • REN Li’na,CHEN Jintao,LI Jianhua
Author information +
文章历史 +

摘要

针对传统状态检测易造成过度检测的问题,提出一种基于实时退化量的数控机床状态检测间隔期确定方法。基于Gamma过程描述数控机床的退化过程,并结合等故障风险,给出退化过程前期的状态检测间隔期;给出系统状态处于缺陷阈值时的期望剩余寿命,并利用其对退化过程后期的状态检测间隔期进行约束,建立两阶段非等周期状态检测间隔期决策模型。以数控机床主轴的加工精度退化过程为例对所提方法进行验证,并与等周期状态检测和基于可靠度的状态检测方法进行对比分析,结果表明,该方法能够大大减少检测次数,降低维修费用,避免了过度检测。研究成果可为合理确定状态检测间隔期提供参考和借鉴。

Abstract

Traditional state detection tends to cause the problem of over-detection. To solve this problem, a method to determine the interval of NC machine tool state detection based on real-time degradation is proposed. Describe the degradation process of CNC machine tools based on the Gamma process, and combine the risk of failures to give the state test interval in the early stage of the degradation process. The expected remaining life when the system state is at the defect threshold was given and used to constrain the state detection interval in the later stage of the degradation process. Thus, a two-stage non-equal period state detection interval decision model is established. Take the machining accuracy degradation process of the CNC machine tool spindle as an example to verify the proposed method, and then compare and analyze it with equal interval state detection and reliability-based state detection methods. The results show that the proposed method can greatly reduce the number of inspections, reduce maintenance costs, and avoid excessive inspections. The research results can provide a reference for the reasonable determination of the state detection interval.

关键词

实时退化量 / 检测间隔期 / Gamma过程 / 状态维修 / 数控机床

Key words

real-time degradation / inspection intervals / Gamma process / condition-based maintenance / CNC machine tool

引用本文

导出引用
任丽娜,陈锦涛,李建华. 基于实时退化量的数控机床状态维修检测间隔期决策研究[J]. 振动与冲击, 2023, 42(4): 81-87
REN Li’na,CHEN Jintao,LI Jianhua. A study on the inspection interval decision of CNC machine tools condition-based maintenance based on real-time degradation[J]. Journal of Vibration and Shock, 2023, 42(4): 81-87

参考文献

[1] BOUSDEKIS A, MAGOUTAS B, APOSTOLOU D, et al. Review, analysis and synthesis of prognostic-based decision support methods for condition based maintenance[J]. Journal of Intelligent Manufacturing, 2018, 29(6): 1303-1316.
[2] HUYNH K T, BARROS A, BERENGUER C, et al. A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events[J]. Reliability Engineering & System Safety, 2011, 96(4): 497-508.
[3] 许飞雪,刘勤明,叶春明,等.基于服务性能合同模式下单部件系统视情维修策略研究[J].计算机应用研究,2021,38(02):460-464.
XU Feixue, LIU Qinming, YE chunming, et al. Research on condition-based maintenance for single-unit systems under performance-based contracting[J]. Application Research of Computers, 2021, 38(02): 460-464.
[4] 陈闯,陆宁云,姜斌,等.单部件加速数控机床主轴的视情维修策略优化[J].系统工程与电子技术,2020,42(03):613-619.
CHEN Chuang, LU Ningyun, JIANG Bin, et al. Optimization of condition-based maintenance strategy for single-unit accelerated degrading systems[J]. Systems Engineering and Electronics, 2020, 42(03): 613-619.
[5] TANG D, MAKIS V, JAFARI L, et al. Optimal maintenance policy and residual life estimation for a slowly degrading system subject to condition monitoring[J]. Reliability Engineering & System Safety, 2015, 134: 198-207.
[6] ZHAO X, FOULADIRAD M, BÉRENGUER C, et al. Condition-based inspection/replacement policies for non-monotone deteriorating systems with environmental covariates[J]. Reliability Engineering & System Safety, 2010, 95(8): 921-934.
[7] JIANG R. Optimization of alarm threshold and sequential inspection scheme[J]. Reliability Engineering & System Safety, 2010, 95(3): 208-215.
[8] CASTRO I T, LANDESA L. A dependent complex degrading system with non-periodic inspection times[J]. Computers & Industrial Engineering, 2019, 133: 241-252.
[9] GOLMAKANI H R, MOAKEDI H. Optimal non-periodic inspection scheme for a multi-component repairable system using A∗ search algorithm[J]. Computers & Industrial Engineering, 2012, 63(4): 1038-1047.
[10] 张耀辉,郭金茂,徐宗昌,等.基于故障风险的状态维修检测间隔期的确定[J].中国机械工程,2008(05):555-558.
ZHANG Yaohui, GUO Jinmao, XU Zongchang, et al. Failure Risk Based Determination of the Test Intervals for Condition Based Maintenance[J], China Mechanical Engineering, 2008(05): 555-558.
[11] 严骏,朱亮,曾拥华,等.基于实时可靠性的状态维修检测间隔期决策模型[J].解放军理工大学学报(自然科学版),2012,13(06):664-668.
YAN Jun, ZHU Liang, ZENG Yonghua, et al. Test intervals decision-making model for condition-based maintenance based on real-time reliability[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2012, 13(06): 664-668.
[12] 张仕新,昝翔,李浩,等.威布尔比例风险模型装备状态维修检测间隔期研究[J].火力与指挥控制,2015,40(07):151-154+159.
ZHANG Shi-xin,ZAN Xiang,LI Hao, et al. Weibull Proportional Hazards Model Based Determination of the Test Intervals for Condition Based Maintenance[J]. Fire Control & Command Control, 2015, 40(07): 151-154+159.
[13] 杨立乾,赵金楼,李根.基于性能退化的船舶关键部件视情维修策略[J].哈尔滨工程大学学报,2020,41(04):613-618.
YANG Liqian, ZHAO Jinlou, LI Gen. Condition-based maintenance strategy for critical ship components based on performance degradation[J]. Journal of Harbin Engineering University, 2020, 41(04): 613-618.
[14] 南西康. 基于非线性Wiener过程的柱塞泵寿命预测及预测性更换决策研究[D].兰州理工大学,2020.
NAN Xikang. Life Prediction and Predictive Replacement Decision Research of Piston Pump Based on Nonlinear Wiener Process[D]. Lanzhou University of Technology, 2020.
[15] 张晓红,张欣,石冠男,等.基于马尔可夫过程的多部件系统劣化状态空间划分模型[J].控制与决策,2021,36(02):418-428.
ZHANG Xiaohong, ZHANG Xin, SHI Guannan, et al. Multi-component system state space partition model based on Markov process[J]. Control and Decision, 2021, 36(02): 418-428.
[16] VAN NOORTWIJK J M. A survey of the application of gamma processes in maintenance[J]. Reliability Engineering & System Safety, 2009, 94(1): 2-21.
[17] ALASWAD S, XIANG Y. A review on condition-based maintenance optimization models for stochastically deteriorating system[J]. Reliability Engineering & System Safety, 2017, 157: 54-63.
[18] LI S, RAN Y, ZHANG G, et al. Accuracy Degradation Model and Residual Accuracy Life Prediction of CNC Machine Tools Based on Wiener Process[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1043(3): 032039.

PDF(1151 KB)

Accesses

Citation

Detail

段落导航
相关文章

/