为弥补现阶段缺乏多跨管道涡激振动实验研究的不足,本文综合考虑流-固-土多物理场耦合,创造性地设计了一套完整的拖曳水池实验系统,并开展了多跨管道涡激振动实验观测。该实验系统可实现海底管道结构自身属性、土体作用、来流速度和预张力等因素对多跨管道涡激振动影响的数据获取,可为后续多跨管道涡激振动的理论研究和数值模拟提供数据参考和验证。研究结果表明:该系统可精准模拟多跨管道复杂的涡激振动现象。本文的研究可为多跨管道跨间作用机理的实验研究提供新思路,同时为系统地研究多跨管道涡激振动提供实验装备支持。
Abstract
In this paper, a complete towing tank test system is designed by considering the fluid-solid-soil coupling and combining the existing experimental conditions. The experimental system can completely test and study the influence of structure properties, incoming flow velocity, and pretension on vortex-induced vibration of multi-span pipelines, providing reference and verification for subsequent theoretical research and numerical simulation of vortex-induced vibration of multi-span pipelines. It is proved that the system can simulate the vortex induced vibration of multi-span pipelines. The research results in this paper provide a new idea for the experimental study of the multi-span mechanism of multi-span pipelines, and provide data reference for the subsequent vortex-induced vibration experiments of multi-span pipelines.
关键词
涡激振动 /
多跨管道 /
流-固耦合 /
水池实验
{{custom_keyword}} /
Key words
vortex-induced vibration /
multi-span pipelines /
fluid-solid coupling /
tank test.
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Soni P K, Larsen C M. Dynamic interaction between spans in a multi span pipeline subjected to vortex induced vibrations[C]. ASME International Conference on Offshore Mechanics and Arctic Engineering, 2005: 255-263.
[2] KOUSHAN K. Vortex induced vibrations of free span pipelines[D]. Doctoral Dissertation, Norwegian University of Science and Technology, 2009.
[3] Sollund H A, Vedeld K, Hellesland J, et al. Dynamic response of multi-span offshore pipelines[J]. Marine Structures, 2014, 39:174-197.
[4] Sollund H A, Vedeld K, Fyrileiv O, et al, Improved assessments of wave-induced fatigue for free spanning pipelines[J]. Applied Ocean Research, 2016, 61:130-147.
[5] Li Baohui, Gao Hangshan, Zhai Hongbo, et al, Free vibration analysis of multi-span pipe conveying fluid with dynamic stiffness method[J]. Nuclear Engineering and Design, 2011, 241(3): 666-671.
[6] Slingsby M. Dynamic Interaction of Subsea Pipeline Spans due to Vortex-Induced Vibrations[D]. Delft University of Technology, 2015.
[7] EI-Sayed T A, EI-Mongy H H. Free vibration and stability analysis of a multi-span pipe conveying fluid using exact and variational iteration methods combined with transfer matrix method[J]. Applied Mathematical Modelling, 2019, 71: 173-193.
[8] Li M, Xu Q, Chen X C, et al, Modeling and modal analysis of non-uniform multi-span oil-conveying pipes with elastic foundations and attachments[J]. Applied Mathematical Modelling, 2020, 88: 661-675.
[9] 高喜峰, 谢武德, 徐万海. 多跨海底管道横流向涡激振动预报模型[J]. 海洋工程, 2016, 34(02): 41-46.
GAO Xifeng, Xie Wude, Xu Wanhai. Prediction model of multi-span pipelines subjected to Vortex Induced Vibration(VIV) in cross flow[J]. The Ocean Engineering, 2020, 88: 661-675.
[10] CHOI H S. Free spanning analysis of offshore pipelines[J]. Ocean Engineering, 2001, 28: 1325-1338.
[11] AI S M, SUN L P. The effect of functional loads on free spanning pipeline's VIV response[J]. Journal of Marine Science and Application, 2009, 8(2):151-155.
[12] 韩国进. 考虑管土耦合作用的海底悬跨管道固有频率研究[J]. 机械设计与制造工程, 2019, 48(12):107-110.
HAN Guojin. Study on the natural frequency of free spanning pipeline considering coupling of pipe and soil [J]. Machine Design and Manufacturing Engineering, 2019, 48(12): 107-110.
[13] YANG B, GAO F P, Jeng D S, et al. Experimental study of vortex-induced vibrations of a pipeline near an erodible sandy seabed[J]. Ocean Engineering, 2008, 35:301-309.
[14] 李小超. 海底管线悬跨段涡激振动响应的实验研究与数值预报[D]. 大连理工大学, 2011.
LI Xiaochao. Vortex-induced vibrations of submarine pipeline spans[D]. Dalian University of Technology, 2011.
[15] 谭鹏涛, 周晶. 海底悬跨管道在波流和地震联合作用时的模型试验研究[J]. 水利与建筑工程学报, 2017, 15(04):142-147.
TAN Pengtao, ZHOU Jing. Experimental research on dynamic response characteristics of spanning pipes under the combined effect of the earthquake wave flow[J]. Journal of Water Resources and Architectural Engineering, 2017, 15(4): 142-147.
[16] 田子谦, 李黎, 陈志军. 自由表面效应对结构动力响应的影响[J]. 华中科技大学学报(城市科学版), 2004(04):75-77.
TIAN Ziqian, LI Li, CHEN Zhijun. Effects of Free Surface Fluctuation on Dynamic Response of Structures[J]. Journal of Huazhong University of Science and Technology(Urban Science Edition), 2004(04):75-77.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}