大跨索屋盖结构风振动力响应复杂,传统采用等效静力风荷载计算其风致振动响应的适用性一直是当前大跨结构研究的热点。针对下凹型(单层马鞍形索网)和上凸型(轮辐式双层索网、索穹顶、弦支穹顶)四类典型大跨索屋盖结构,以四类结构风洞试验测试数据为基础,结合最近邻点插值方法研究提出了基于节点动力风荷载(模式一)和面组分区动力风荷载(模式二)两种荷载取值计算模式及其计算流程,并与传统基于等效静力风荷载的取值计算模式(模式三)进行对比,在四种不利风向角下探究四类典型索屋盖采用三种荷载取值模式时的风致振动响应。结果表明,基于模式一与模式二计算得到的索屋盖结构风振响应均较模式三要高,采用节点风荷载的取值计算模式一能更为精确地反映屋盖结构实际承担的风荷载,有效表征屋盖结构的实际风振响应;在上下游均无临近场馆影响下,下凹型和上凸型索屋盖的平均和脉动风振位移响应云图总体分布规律较为一致,但响应大小变化规律不一,下凹型呈现中间大、周边小的逐渐递减的规律,而上凸型屋盖呈现中心区域小、中间环带大、周边再次下降的变化规律。
Abstract
The wind-induced vibration response of long-span cable roof structures is complicated. Currently, one of the research focus is the applicability of the traditional equivalent static wind loads to calculate the wind-induced vibration response of long-span cable roof structures. This research focuses on four types of typical long-span cable roof structures: the concave type (the single-layer saddle-shaped cable net) and the convex types (the spoke-type double-layer cable net, the cable dome, and the string-supported dome), and all of them are tested by wind tunnel tests. Based on these data, two load value calculation modes and calculation procedures are proposed for the node dynamic wind load (Mode 1) and the area group dynamic wind load (Mode 2) by the nearest neighbor interpolation method, and are compared to the traditional equivalent static wind loads (Mode 3). The wind-induced vibration responses of four types of the typical cable roofs are studied with three different load value modes under four unfavorable wind direction angles. The results show that the wind vibration responses of the cable roof structure calculated based on Mode 1 and Mode 2 are respectively higher than that of Mode 3. In addition, it is more accurate to calculate the value of the node wind load of Mode 1, which reflects the actual wind load of the roof structure and effectively represents the actual wind-induced response of the roof structure. Furthermore, under the influence of no adjacent venues on the upstream and downstream, the average and fluctuating wind-induced displacement response cloud patterns of the concave and the convex cable roofs are relatively consistent, but their response sizes vary. The wind-induced displacement of the concave roof shows the tendency of gradually decreasing from the middle to the periphery, while the wind-induced displacement of the convex roof tends to increase from the central area to the middle ring and then reduce to the periphery.
关键词
索屋盖 /
风荷载 /
取值模式 /
风振响应 /
风振系数
{{custom_keyword}} /
Key words
cable roof /
wind load /
value mode /
wind vibration response /
wind coefficient
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 董石麟, 邢栋, 赵阳. 现代大跨空间结构在中国的应用与发展[J]. 空间结构, 2012, 18(1):3-16.
Dong Shilin, Xing Dong, Zhao Yang. Application and development of modern large-span spatial structure in China[J]. Space Structure, 2012, 18(1):3-16.
[2] 沈世钊. 大跨空间结构的发展--回顾与展望[J]. 土木工程学报, 1998, 031(003):5-14.
Shen Shizhao. The development of large-span spatial structures-review and prospect [J]. China Civil Engineering Journal, 1998, 031(003): 5-14.
[3] 董石麟. 中国空间结构的发展与展望[J]. 建筑结构学报, 2010(06):44-57.
Dong Shilin. Development and Prospect of spatial structure in China [J]. Journal of architectural structure, 2010 (06): 44-57.
[4] Uematsu Y , Watanabe K , Sasaki A , et al. Wind-induced dynamic response and resultant load estimation of a circular flat roof[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1999, 83(1-3):251-261.
[5] Yasui H , Marukawa H , Katagiri J , et al. Study of wind-induced response of long-span structure[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83(1):277-288.
[6] 侯亚委. 风敏感结构的气动抗风措施研究[D]. 北京交通大学, 2011.
Hou Yawei. Research on aerodynamic wind resistance measures for wind sensitive structures [D]. Beijing Jiaotong University, 2011.
[7] 李华峰. 空间结构数值风洞模拟与流固耦合风致响应[D]. 上海交通大学, 2008.
Li Huafeng. Numerical wind tunnel simulation and fluid structure coupling wind-induced response of spatial structure [D]. Shanghai Jiaotong University, 2008.
[8] 胡海岩, 田强, 张伟, 等. 大型网架式可展开空间结构的非线性动力学与控制[J]. 力学进展, 2013, 43(04):390-414.
Hu Haiyan, Tian Qiang, Zhang Wei, et al. Nonlinear dynamics and control of large deployable space truss structures [J]. Progress in mechanics, 2013, 43 (04): 390-414.
[9] Aung N N, Jihong Y. Coherence of wind pressure on domes[J]. Journal of Southeast University Edition, 2010, 26(1):100-106.
[10] Cheng C M , Fu C L . Characteristic of wind loads on a hemispherical dome in smooth flow and turbulent boundary layer flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6):328-344.
[11] 王珩, 孙炳楠, 楼文娟, 等. 台州体育中心屋盖的风振系数计算[J]. 工业建筑, 2005(04):82-84+94.
Wang Heng, sun Bingnan, Lou Wenjuan, et al. Calculation of wind-induced vibration coefficient of Taizhou sports center roof [J]. Industrial building, 2005 (04): 82-84 + 94.
[12] 韩志惠, 周晅毅, 顾明, 等. 世博轴阳光谷结构风致响应分析及频域时域方法计算结果比较[J]. 振动与冲击,2011,30(05):230-235.
Han Zhihui, Zhou Yi, Gu Ming, et al. Wind induced response analysis and frequency domain method comparison of the structure of Sunshine Valley structure of Expo Axis [J]. Vibration and impact, 2011,30 (05): 230-235.
[13] 孙旭峰, 孙宇坤, 董石麟. 肋环型索穹顶结构的气动阻尼研究[J]. 土木工程学报,2009,42(08):37-41.
Sun Xufeng, sun Yukun, Dong Shilin. Research on aerodynamic damping of ribbed cable dome [J]. Chinese Journal of civil engineering, 2009,42 (08): 37-41.
[14] 徐牧. 索穹顶结构风振响应研究[D]. 华南理工大学, 2011.
Xu mu. Research on wind-induced response of cable dome [D]. South China University of technology, 2011.
[15] 赵臣, 谭东耀, 沈世钊. 大跨悬索屋盖风振反应分析[C]// 第五届空间结构学术交流会论文集. 1990.
Zhao Chen, Tan Dongyao, Shen Shizhao. Wind-induced response analysis of long-span cable-stayed roofs [C] / / Proceedings of the Fifth Symposium on spatial structures. 1990.
[16] 冯若强, 武岳, 沈世钊. 鞍形索网屋盖结构风振响应分析的Ritz-POD法[J]. 工程力学, 2006, 23(12):73-79.
Feng Ruoqiang, Wu Yue, Shen Shizhao. Wind-induced response analysis of saddle-backed cable Net roofs using ritz-pod method [J]. Engineering mechanics, 2006, 23 (12): 73-79.
[17] 李璟, 韩大建. 大跨度索膜屋盖结构的风振系数研究[J]. 振动与冲击, 2009, 28(5):153-159.
Li Jing, Han Dajian. Study on wind-induced vibration coefficient of long-span cable membrane roof structure [J]. Vibration and impact, 2009, 28 (5): 153-159.
[18] 罗俊杰, 韩大建. 大跨度索-膜屋盖结构风振响应分析[J]. 土木工程学报, 2009(10):15-21.
Luo Junjie, Han Dajian. Wind-induced response analysis of long-span cable membrane roof structures [J]. Journal of civil engineering, 2009 (10): 15-21.
[19] 李玉学,杨庆山,田玉基,朱英磊.大跨屋盖结构多目标等效静力风荷载[J].工程力学,2016,33(06):85-92.
Li Yuxue, yangqingshan, tianyuji, Zhu yinglei. Multi-objective equivalent static wind load of large span roof structure [j]. Engineering mechanics, 2016,33 (06): 85-92.
[20] 丁巍. 大跨屋盖结构风振响应与等效静力风荷载研究[D]. 西南交通大学,2015.
Ding Wei. Research on wind-induced response and equivalent static wind load of long-span roof structure [D]. Southwest Jiaotong University, 2015.
[21] GB50009-2012. 建筑结构荷载规范[S]. 中国建筑工业出版社:中华人民共和国建设部, 2012.
GB 5009-2012. Load code for building structures [S]. China Construction Industry Press: Ministry of construction of the people's Republic of China, 2012.
[22] JGJ/T4814-2019. 屋盖结构风荷载标准[S]. 中国建筑工业出版社:中华人民共和国建设部, 2019.
JGJ / t4814-2019. Load code for building structures [S]. China Construction Industry Press: Ministry of construction of the people's Republic of China, 2019.
[23] 区彤, 张佳武, 陈进于. 湛江新机场航站楼屋盖结构分区等效静风荷载研究[J/OL]. 建筑钢结构进展: 1-10 [2022-03-14]. http://kns.cnki.net/kcms/detail/31.1893
[24] JGJ257-2012. 索结构技术规程[S]. 中国建筑工业出版社:中华人民共和国建设部, 2012.
JGJ257-2012. Technical specification for cable structure [S]. China Construction Industry Press: Ministry of construction of the people's Republic of China, 2012
[25] GB50017-2017. 钢结构设计标准[S]. 中国建筑工业出版社:中华人民共和国建设部, 2012.
GB 50017-2017. Steel structure design standard [S]. China Construction Industry Press: Ministry of construction of the people's Republic of China, 2012
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}