针对煤矿井下工作环境复杂,采集到的微震信号包含大量噪声信号,严重影响对微震信号的拾取、定位和反演。本文采用互补集合经验模态分解(CEEMD)联合奇异值分解(SVD)与长短时窗法(STA/LTA)相结合的降噪算法。利用CEEMD分解微震信号,得到固有模态分量(IMF),依据相关系数确定噪声主导的IMF和信号主导的IMF,通过STA/LTA去除CEEMD产生的伪分量。对噪声主导的分量进行SVD分解降噪后与信号主导的分量及剩余分量重构得到降噪后信号。加入模拟噪声信号与实际采集的微震信号进行仿真实验,结果表明本文算法在保证小剩余噪声干扰的情况下,可以节省计算时间。通过与经验模态分解(EMD)、聚合经验模态分解(EEMD)及新型自适应聚合经验模态分解(NAEEMD)降噪方法进行对比,依据信噪比、能量百分比及标准差三个评价指标进行定量计算,实验表明本文方法具有更好的降噪效果。
Abstract
In view of the complex working environment of underground coal mine, the collected microseismic signals contain a large number of noise signals, which seriously affects the pickup, location and inversion of microseismic signals. In this paper, complementary set empirical mode decomposition (CEEMD) combined with singular value decomposition (SVD) and STA/LTA are used to reduce noise. The microseismic signals were decomposed by CEEMD to obtain the inherent modal component (IMF) of the signals. The noise-dominated IMF and signal-dominated IMF were determined according to the correlation coefficient, and the pseudo-components generated by CEEMD were removed by STA/LTA. The denoised signal is obtained by SVD decomposition of noise-dominated IMF and reconstruction of signal-dominated IMF and residual components. The simulation results show that the proposed algorithm can save the computation time under the condition of small residual noise. Compared with empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD) and novel adaptive ensemble empirical mode decomposition (NAEEMD) denoising methods, the three evaluation indexes of SNR, energy percentage and standard deviation are calculated quantitatively, and the results show that the proposed method has better denoising effect.
关键词
微震信号 /
STA/LTA /
CEEMD /
SVD /
降噪
{{custom_keyword}} /
Key words
microseismic signal /
STA/LTA /
CEEMD /
SVD /
denoising
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]丰光亮,张建聪,江权,等.开挖强卸荷下柱状节理岩体时效破裂过程协同观测与机制分析[J].岩石力学与工程报,2021,40(S2):3041-3051.
Gui Guangliang, Zhang Jiancong, Jiang Quan, et al. Synergistic observation and mechanism analysis of time-dependent fracture process of columnar jointed rockmass under strong unloading during excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3041-3051.
[2]F. Q. Gao, H. P. Kang, L. Yang. A Microseismic Method for Dynamic Warning of Rockburst Development Processes in Tunnels[J]. Rock Mechanics & Rock Engineering, 2015, 48(5):2061-2076.
[3]马天辉,刘飞,唐春安.深埋隧洞岩爆微震监测预警技术[J].实验室研究与探索,2020,39(03):6-10.
Ma Tianhui, Liu Fei, Tang Chunan. Early Warning for the Rockburst in Deep-buried Tunnels Using Microseismic Monitoring Technique[J]. Research and Exploration in Laboratory, 2020, 39(03): 6-10.
[4]刘建功,啜晓宇,李玉宝,等.矿井水害微震监测预警理论与技术研究[M].煤炭工业出版社,2017.
Liu Jiangong, Chuai Xiaoyu, Li Yubao, et al. Study on the theory and technology of microseismic monitoring and early warning in coal mine[M]. China Coal Industry Publishing Home, 2017.
[5]张立亚,孟庆勇,杨坤.基于维纳滤波的矿井监控图像的复原技术[J].煤矿安全,2019,50(01):129-132.
Zhang Liya, Meng Qingyong, Yang Kun. Recovery Technology of Mine Monitoring Image Based on Wiener Filtering[J]. Safety in Coal Mines, 2019, 50(01): 129-132.
[6]宫月,贾瑞生,卢新明,等.利用经验模态分解及小波变换压制微震信号中的随机噪声[J].煤炭学报,2018,43(11):3247-3256.
Gong Yue, Jia Ruisheng, Lu Xinming, et al. To suppress the random noise in microseismic signal by using empirical mode decomposition and wavele transform[J]. Journal of China Coal Society, 2018, 43(11): 3247-3256.
[7]Alvanitopoulos P F, Papavasileiou M, Andreadis I, et al. Seismicintensity feature construction based on the Hilbert-Huang transform. IEEE Transactions on Instrumentation and Measurement, 2012, 61(2): 326-337.
[8]BAZUW E, WEIR JONES I. Application of kalman filtering techniques for microseismic event detection[J]. Pure and Applied Geophysics, 2002, 159(1): 449-471.
[9]KABIR MD, ASHFANOOR, SHAHNAZ CELIA, Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains[J]. Biomedical Signal Processing and Control, 2012, 7(5): 481-489.
[10]徐宏斌,李庶林,陈际经.基于小波变换的大尺度岩体结构微震监测信号去噪方法研究[J].地震学报,2012,34(1):85-96+127.
Xu Hongbin, Li Shulin, Chen Jijing. A study on method of signal denoising based on wavelet transform for micro-seismicity monitoring in large-scale rockmass structures[J]. Acta Seismologica Sinica, 2012, 34(1): 85-96+127.
[11]HUANGNE, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Prc. R. Soc. LOND, 1998, 454: 903-995.
[12]TO A C, MOORE J R, GLASER S D. Wavelet denoising techniques with applications to experimental geophysical data[J]. Signal Processing, 2009, 89(2): 144-160.
[13]郑源,潘天航,王辉斌,等.改进EMD-ICA去噪在水轮机组隐蔽碰磨诊断中的应用研究[J].振动与冲击,2017,36(6):235-240.
Zheng Yuan, Pan Tianhang, Wang Huibin, et al. Improved EMD-ICA method used in the hidden rubbing fault diagnosis of turbine units[J]. Journal of Vibration and Shock, 2017, 36(6): 235-240.
[14]马宏伟,张大伟,曹现刚,等.基于EMD的振动信号去噪方法研究[J].振动与冲击,2016,35(22):38-40.
Ma Hongwei, Zhang Dawei, Cao Xiangang, et al. Vibration signal de-noising method based on empirical mode decomposition[J]. Journal of Vibration and Shock, 2016, 35(22): 38-40.
[15]贾瑞生,赵同彬,孙红梅,等.基于经验模态分解及独立成分分析的微震信号降噪方法[J].地球物理学报,2015,58(3):1013-1023.
Jia Ruisheng, Zhao Tongbin, Sun Hongmei, et al. Micro-seismic signal denoising method based on empirical mode decomposition and independent component analysis[J]. Chinese Journal of Geophysics, 2015, 58(3): 1013-1023.
[16]WU Z H, HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[17]Z. H. Wu, N. E. Huang, “Ensemble empirical mode decomposition:A noise-assisted data analysis method,” Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[18]崔云洁.微震P波震相初至拾取方法研究[D].山东科技大学,2018.
Cui YUNjie.Study on the method of arrival automatic picup of microseismic p-wave phase[D]. Shandong University of Science and Technology,2018.
[19]李伟,江晓林,陈海波,等.基于EEMD_Hankel_SVD的矿山微震信号降噪方法[J].煤炭学报,2018,43(7):1910-1917.
Li Wei, Jiang Xiaolin, Chen Haibo, et al. Denosing method of mine microseismic signal based on EEMD-Hankel-SVD[J]. Journal of China Coal Society, 2018, 43(7): 1910-1917.
[20]段青达,基于改进型CEEMD_SVD的高边坡变形数据消噪分析及建模研究[D].桂林理工大学2020.
Qingda Duan, Denoising analysis and modeling of high slope deformation data based on improved CEEMD_SVD.[D]Guilin, Guilin University of Technology2020
[21]吴浩浩,罗志增.基于构造Hankel矩阵的SVD陷波方法[J].计算机应用研究,2010,27(12):4514-4516.
Wu Haohao, Luo Zhizeng. Signal notch method based on Hankel matrix and SVD[J]. Application Research of Computers, 2010, 27(12): 4514-4516.
[22]刘晗,张建中.微震信号自动检测的STA/LTA算法及其改进分析[J].地球物理学进展,2014,29(04):1708-1714.
Liu Han, Zhang Jianzhong. STA/LTA algorithm analysis and improvement of Microseismic signal automatic detection[J]. Progress in Geophysics, 2014, 29(04): 1708-1714.
[23]张冲冲,煤矿复杂噪声背景下微震信号降噪与初至拾取方法研究[D].邯郸:河北工程大学,2021.
Zhang Chongchong,Research on Denoising and first arrival picking of microseismic signal under complex noise background of coal mine[D].Handan: Hebei University of Engineering,2021.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}